K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Δ=(-3)^2-4m^2=9-4m^2

Để phương trình có hai nghiệm thì 9-4m^2>=0

=>-2/3<=m<=2/3

x1^2-3x2+x1x2-m^2-2m-1>6-m^2

=>x1^2-x2(x1+x2)+x1x2>6-m^2+m^2+2m+1=2m+7

=>x1^2-x2^2>2m+7

=>(x1+x2)(x1-x2)>2m+7

=>(x1-x2)*3>2m+7

=>x1-x2>2/3m+7/3

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=3^2-4m^2=9-4m^2\)

=>\(x1-x2=\left|9-4m^2\right|\)

=>|9-4m^2|>2/3m+7/3

=>|4m^2-9|>2/3m+7/3

=>4m^2-9<-2/3m-7/3 hoặc 4m^2-9>2/3m+7/3

=>4m^2+2/3m-20/3<0 hoặc 4m^2-2/3m-34/3>0

=>\(\dfrac{-1-\sqrt{241}}{12}< m< \dfrac{-1+\sqrt{241}}{12}\) hoặc \(\left[{}\begin{matrix}m< \dfrac{1-\sqrt{409}}{12}\\m>\dfrac{1+\sqrt{409}}{12}\end{matrix}\right.\)

=>-2/3<=m<=2/3

5 tháng 3 2021

Theo hệ thức Vi -  ét, ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2m + 1\\ {x_1}{x_2} = m - 7 \end{array} \right.\)

Theo đề bài, ta có: \({x_1} - {x_2} = 3\)

Từ đó ta có: \(\left\{ \begin{array}{l} {x_1} + {x_2} = 2m + 1\\ {x_1} - {x_2} = 3 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} {x_1} = m + 2\\ {x_2} = m - 1 \end{array} \right.\)

Với giá trị trên, ta có: 

\(\begin{array}{l} \left( {m + 2} \right)\left( {m - 1} \right) = m - 7\\ \Leftrightarrow {m^2} + m - 2 = m - 7\\ \Leftrightarrow {m^2} = - 5 \end{array}\)

Vậy không có giá trị $m$ thỏa mãn

5 tháng 3 2021

x2 - (2m + 1)x + m - 7 = 0

Có: \(\Delta\) = [-(2m + 1)]2 - 4.1.(m - 7) = 4m2 + 4m + 1 - 4m + 28 = 4m2 + 29 > 0

\(\Rightarrow\) x1 = \(\dfrac{2m+1+\sqrt{\Delta}}{2}\); x2 = \(\dfrac{2m+1-\sqrt{\Delta}}{2}\)

Lại có: x1 - x2 = 3

\(\Leftrightarrow\) \(\dfrac{2m+1+\sqrt{\Delta}-2m-1+\sqrt{\Delta}}{2}=3\)

\(\Leftrightarrow\) 2\(\sqrt{\Delta}\) = 6

\(\Leftrightarrow\) \(\sqrt{\Delta}\) = 3

\(\Leftrightarrow\) \(\Delta\) = 9

\(\Leftrightarrow\) 4m2 + 29 = 9

\(\Leftrightarrow\) m2 = -5 (Vô nghiệm)

Vậy không có giá trị m nào thỏa mãn đk

Chúc bn học tốt!

19 tháng 3 2023

\(2x^2-\left(4m+3x\right)x+2m^2-1=0\)

\(-x^2-4mx+2m^2-1=0\)

\(\Delta=\left(4m\right)^2+4\left(2m^2-1\right)=24m^2-4\)

Để phương trình có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\Leftrightarrow24m^2-4>0\Leftrightarrow m>\dfrac{1}{\sqrt{6}}\)

Vì phương trình có 2 nghiệm phân biệt, Áp dụng hệ thức Vi ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-4m\\x_1.x_2=1-2m^2\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=6\)

\(\Rightarrow\left(x_1+x_2\right)^2-2\left(x_1.x_2\right)=6\)

\(\Leftrightarrow16m^2-2\left(1-2m^2\right)=6\)

\(\Leftrightarrow20m^2=8\)

\(\Leftrightarrow m^2=\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{\dfrac{2}{5}}\left(TM\right)\\m=-\sqrt{\dfrac{2}{5}}\left(\text{Loại vì m}>\dfrac{1}{\sqrt{6}}\right)\end{matrix}\right.\)

Vậy ...

6 tháng 4 2023

Bạn viết vội hay gì mà chữ như rồng bay phượng múa thế :vv

12 tháng 3 2023

\(-x^2+\left(m+2\right)x+2m=0\)

\(\Delta=\left(m+2\right)^2+8m=\left(m+6\right)^2-32\)

Để phương trình có 2 nghiệm phân biệt

<=> \(\Delta>0\Leftrightarrow\left(m+2\right)^2>32\Leftrightarrow m>\sqrt{32}-2\)

Vì phương trình có 2 nghiệm phân biệt

Áp dụng hệ thức vi ét

\(\Rightarrow x_1+x_2=m+2\)

=> \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1+4x_2=0\end{matrix}\right.\)

\(\Rightarrow m=-3x_2-2\)

Bạn xem lại đề chứ k tìm được m luôn á

12 tháng 3 2023

Để mai mình hỏi thầy.Chắc thầy giáo mình giao nhầm đề :vv

11 tháng 2 2022

Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)

\(\Rightarrow m^2-4.1.\left(-2\right)>0\\ \Rightarrow m^2+8>0\left(luôn.đúng\right)\)

Vậy pt luôn có 2 nghiệm phân biệt

Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-2\end{matrix}\right.\)

\(x^2_1x_2+x_1x^2_2=2021\\ \Leftrightarrow x_1x_2\left(x_1+x_2\right)=2021\\ \Leftrightarrow\left(-m\right)\left(-2\right)=2021\\ \Leftrightarrow2m=2021\\ \Leftrightarrow m=\dfrac{2021}{2}\)

 

Để pt có 2 nghiệm thì

\(\Delta>0\\ \Rightarrow m^2-4.1.\left(-2\right)>0\\ \Rightarrow m^2+8>0.đúng.\forall.m\) 

Vậy pt luôn có 2 nghiệm phân biệt

Áp dụng đlí Viét ta có

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=-m\\x_1x_2=\dfrac{c}{a}=-2\end{matrix}\right.\) 

Lại có

\(x_1x_2+x_1x_2=2021\\ \Rightarrow x_1x_2\left(x_1+x_2\right)< 2021\\ \Rightarrow-2\left(-m\right)=2021\Rightarrow2m=2021\\ \Rightarrow m=\dfrac{2021}{2}\)

a: \(\Delta=\left(2m+2\right)^2-4\left(m^2-2m-3\right)\)

\(=4m^2+8m+4-4m^2+8m+12\)

=16m+16

Để phương trình luôn có nghiệm thì 16m+16>=0

hay m>=-1

b: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=28\)

\(\Leftrightarrow\left(2m+2\right)^2-3\left(m^2-2m-3\right)=28\)

\(\Leftrightarrow4m^2+8m+4-3m^2+6m+9=28\)

\(\Leftrightarrow m^2+14m-15=0\)

=>(m+15)(m-1)=0

=>m=1

12 tháng 3 2022

undefined

Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(3-m^2\right)\)

\(=\left(2m-2\right)^2-4\left(3-m^2\right)\)

\(=4m^2-8m+4-12+4m^2\)

\(=8m^2-8m-8\)

\(=8\left(m^2-m-1\right)\)

Để phương trình có nghiệm thì \(\text{Δ}\ge0\)

\(\Leftrightarrow m^2-m-1\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}m\ge\dfrac{\sqrt{5}+1}{2}\\m\le\dfrac{-\sqrt{5}+1}{2}\end{matrix}\right.\)

Áp dụng hệ thức Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=3-m^2\end{matrix}\right.\)

Ta có: \(x_1+x_2=3\)

\(\Leftrightarrow2m-2=3\)

\(\Leftrightarrow2m=5\)

hay \(m=\dfrac{5}{2}\)(thỏa ĐK)