Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)=>\(a=k\cdot a_1\), \(b=k\cdot b_1\), \(c=k\cdot c_1\)
=> \(P=\frac{a\cdot x^2+b\cdot x+c}{a_1\cdot x^2+b_1\cdot x+c_1}=\frac{k\cdot a_1\cdot x^2+k\cdot b_1\cdot x+k\cdot c_1}{a_1\cdot x^2+b_1\cdot x+c_1}=\frac{k\cdot\left(a_1\cdot x^2+b_1\cdot x+c_1\right)}{a_1\cdot x^2+b_1\cdot x+c_1}=k\)
Vậy khi \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)thì \(P\) luôn bằng k với mọi x
(Nhớ tick cho mình nha)
Có : a/a1 = b/b1 = c/c1
=> ax^2/a1x^2 = bx/b1x = c/c1
ÁP dụng tính chất dãy tỉ số bằng nhau ta có :
ax^2/a1x^2 = bx/b1x = c/c1 = ax^2+bx+c/a1x^2+b1x+c1
=> P = c/c1
=> Gía trị của biểu thức P ko phụ thuộc vào x
Tk mk nha
đặt \(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=k\)
\(\Rightarrow a=a_1k\text{ };\text{ }b=b_1k\text{ };\text{ }c=c_1k\)
Thay vào, ta được :
\(P=\frac{a_1kx^2+b_1kx+c_1k}{a_1x^2+b_1x+c_1}=\frac{k.\left(a_1x^2+b_1+c_1\right)}{a_1x^2+b_1x+c_1}=k\)
Vậy ....
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2007}}{a_{2008}}=\frac{a_{2008}}{a_1}=\frac{a_1+a_2+...+a_{2007}+a_{2008}}{a_2+a_3+...+a_{2008}+a_1}=1\)
Do đó : \(a_1=a_2=...=a_{2007}=a_{2008}\)
\(\Rightarrow\)\(N=\frac{a_1^2+a_2^2+...+a_{2008}^2}{\left(a_1+a_2+...+a_{2008}\right)^2}=\frac{a_1^2+a_1^2+...+a_1^2}{\left(a_1+a_1+...+a_1\right)^2}=\frac{2018a_1^2}{2018^2a_1^2}=\frac{1}{2018}\)
Vậy \(N=\frac{1}{2018}\)
Chúc bạn học tốt ~
Áp dụng tính chất cua dãy tỉ số bằng nhau ta có:
\(\frac{a}{a_1}=\frac{b}{b_1}=\frac{c}{c_1}=\frac{ax^2}{a_1x^2}=\frac{bx}{b_1x}=\frac{c}{c_1}=\frac{ax^2+bx+c}{a_1x^2+b_1x+c_1}=P\)
=>\(P=\frac{a}{a_1}\)
=>Giá trị của P phụ thuộc vào a và a1
VậyGiá trị của P không phụ thuộc vào x
Câu trả lời của mình đang chờ duyệt