Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Phương trình hoành độ giao điểm của đường thẳng và Parabol là:
\(\dfrac{1}{4}x^2=mx+2\Leftrightarrow\dfrac{1}{4}x^2-mx-2=0\) (1)
Ta có: \(\Delta=\left(-m\right)^2-4\cdot\dfrac{1}{4}\cdot\left(-2\right)=m^2+2>0\forall m\)
nên (1) có 2 nghiệm phân biệt
Vậy (P) và (d) cắt nhau tại 2 điểm phân biệt
*Theo hệ thức vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=-2\end{matrix}\right.\)
...https://olm.vn/hoi-dap/detail/102321288521.html tham khảo ở đây
a) Gọi A(xA;yA) là điểm cố định mà (d) luôn đi qua
=> yA = mxA + 1 với mọi m
=> xA.m + 1 - yA = 0 với mọi m
<=> xA = 0 và 1 - yA = 0
<=> xA = 0 ; yA = 1
Vậy A(0;1)
b) Phương trình hoành đọ giao điểm của (P) và (d) là:
x2 = mx + 1
<=> x2 - mx - 1 = 0
\(\Delta\) = (-m)2 + 4 = m2 + 4 > 0 với mọi m
=> Pt có 2 nghiệm pb với mọi m
=> (P) luôn cắt (d) tại 2 điểm phân biệt A;B
Theo Vi - et ta có: xAxB = -1 < 0
=> xA ; xB trái dấu => A; B nằm khác phía so với trục tung
a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0
hay m<>2
b: \(\left|x_A-x_B\right|< 3\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)
\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)
\(\Leftrightarrow\left(m-2\right)^2-3< 0\)
=>(m+1)(m-5)<0
=>-1<m<5
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath