Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số? Vì sao?
p và 2p+1 nguyên tố
Nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
Xét p chia hết cho 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố chia hết cho 3
Vì p là số nguyên tố lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2
Với p = 3k+1 => 2p+1 = 2(3k+1) + 1 = 6k + 2 + 1 = 6k + 3 \(⋮\) 3 và lớn hơn 3
=> 2p+1 là hợp số (loại)
=> p chỉ có dạng 3k+2
Với p = 3k+2 => 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 \(⋮\) 3 và lớn hơn 3
=> 4p+1 là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là một số nguyên tố thì 4p+1 là hợp số.
Nếu P là số nguyên tố lớn hơn 3 và 2P+1 cũng là số nguyên tố thì 4P+1 là số nguyên tố hay là hợp số?
Vì p là số nguyên tố > 3 nên p có 2 dạng:
+ Nếu p = 3n + 1(n thuộc N) thì thay vào 2p + 1, ta có:
2(3n + 1) + 1 = 6n + 2 + 1 = 6n + 3 là hợp số (loại)
+ Nếu p = 3n + 2(n thuộc N) thì thay vô 2p + 1, ta có:
2(3n + 2) + 1 = 6n + 4 + 1 = 6n + 5
Vì 6 chia hết cho 3 => 6n chia hết cho 3
Mà 5 không chia hết cho 3 nên 2p + 1 là số nguyên tố (chọn)
Thay p = 3n + 2 vào 4p + 1, ta có:
4(3n + 2) + 1 = 12n + 8 + 1 = 12n + 9
Vì 12 chia hết cho 3 nên 12n chia hết cho 3
Mà 9 chia hết cho 3 nên 12n + 5 là hợp số hay 4p + 1 là hợp số
Tick cho mình nha
p là số nguyên tố lớn hơn 3 nên p có dạng : 3k+1 hoặc 3k+2 Xét trường hợp p=3k+1 ta có 2n+1=2(3k+1)+1=6k +2+1=6k+3(chia hết cho 3 nên là hợp số)Loại Xét trường hợp p=3k+2 ta có 2n+1 =2(3k+2)+1=6k+4+1=6k+5(là số nguyên tố nên ta chọn trường hợp này) Vậy 4p+1=4(3k+2)+1=12k+8+1=12k+9 ta thấy 12k và 9 đều chia hết cho 3 nên (12k+9) là hợp số Do đó 4p+1 là hợp số
Vì p là số nguyên tố lớn hơn 3
=> p có dạng 3k+1; 3k+2 (k\(\inℕ^∗\))
Thay p=3k+1 vào 2p+1 ta có:
2p+1=2(3k+1)+1=6k+2+1=6k+3
Thấy \(\hept{\begin{cases}6k⋮3\\3⋮3\end{cases}\Rightarrow6k+3⋮3}\)
=> 2p+1 là hợp số (loại)
Thay p=3k+2 vào 2p+1 ta có:
2p+1=2(3k+2)+1=6k+5 là số nguyên tố (chọn)
Với p=3k+2 => 4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
là hợp số