K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

+ Ta có: AB là tiếp tuyến của (O)(gt)

nên AB\(\perp\)OB  

=> \(\Delta\)OBA vuông tại B(đpcm)

+ Xét \(\Delta\)OAK Có A1=A2  ( 1 ) (t/c 2 tiếp tuyến cắt nhau)

OK // AB => A1 = O1 ( 2 ) (so le trong)

Từ (1, 2) => (đpcm)

b, Xét \(\Delta\)AKO cân tại K (cmt)

IA = IO (=R)

=> KI là đường trung tuyến \(\Delta\)AKO

=> KI cũng là đường cao

=> KI\(\perp\)AO  hay KM \(\perp\)IO  

Vậy KM là tiếp tuyến của (O) (đpcm)

c, MI = MB ; KI = KC ; AB = AC ( t/c 2 tiếp tuyến cắt nhau )

Xét \(\Delta\)ABO vuông tại B (cmt) 

AD định lí Py ta go ta cs : 

AO2 =AB2  + OB2

AB2 = AO2 - OB2

AB2 = 4R2 - R2

AB = \(R\sqrt{3}\)

dễ rùi tự lm tiếp 

Giải giúp mình các bài này với ạ!1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = ACa. CM : Tam giác OAB = tam giác OACb. CM : AC là tiếp tuyến của đường tròn tâm Oc. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không...
Đọc tiếp

Giải giúp mình các bài này với ạ!

1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm

2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O

3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.

0
15 tháng 12 2015

ta có OK vuông góc với AB(giả thiết)

OB vuông góc với AB(tính chất tiếp tuyến)

do đó OK//Ob =>góc AOK=gócBAO

mà góc BAO= góc OAK (tính chất hai tiếp tuyến cắt nhau

nên góc AOK=góc OAK

hay tam giác AKO cân tại K

a) Xét (O) có

MA là tiếp tuyến có A là tiếp điểm(gt)

MB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: MA=MB(Tính chất hai tiếp tuyến cắt nhau)

Xét (O) có

MA là tiếp tuyến có A là tiếp điểm(gt)

MB là tiếp tuyến có B là tiếp điểm(gt)

Do đó: MO là tia phân giác của \(\widehat{AMB}\)(Tính chất hai tiếp tuyến cắt nhau)

nên \(\widehat{AMB}=2\cdot\widehat{AMO}\)(1)

Xét ΔOAM vuông tại A có 

\(\sin\widehat{AMO}=\dfrac{OA}{OM}=\dfrac{R}{2\cdot R}=\dfrac{1}{2}\)

hay \(\widehat{AMO}=30^0\)(2)

Thay (2) vào (1), ta được: \(\widehat{AMB}=60^0\)

Xét ΔAMB có MA=MB(cmt)

nên ΔAMB cân tại M(Định nghĩa tam giác cân)

Xét ΔAMB cân tại M có \(\widehat{AMB}=60^0\)(cmt)

nên ΔAMB đều(Dấu hiệu nhận biết tam giác đều)

 

a: góc KOA+góc BOA=90 độ

góc KAO+góc COA=90 độ

mà góc BOA=góc COA

nên góc KOA=góc KAO

=>ΔKAO cân tại K

b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

=>góc BOA=60 độ

Xét ΔOBI có OB=OI và góc BOI=60 độ

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)