K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2018

a, Ta có:  E C A ^ + O C A ^ = 90 0 và A C H ^ + O A C ^ = 90 0

mà  O A C ^ = O C A ^  (do tam giác AOC cân tại O)

Suy ra E C A ^ = A C H ^

Khi đó  E A C ^ = H A C ^  (cùng lần lượt phụ với E C A ^ và  A C H ^ ), ta có đpcm

b, Chứng minh tương tự  suy ra BC là phân giác của  F B H ^

Từ đó, chứng minh được BC vuông góc HF (1)

Tam giác ABC có trung tuyến OC = 1 2 AB. Suy ra tam giác ABC vuông tại C , tức là BC vuông góc với AC (2)

Từ (1),(2) suy ra đpcm

c, Ta có : AE+BF =2OC=2R không đổi

d, Ta có   A E . B F ≤ A E + B F 2 4 = R 2

suy ra AE.BF lớn nhất =  R 2 óAE=BF=R

Điều này xẩy ra khi C là điểm chính giữa cung AB

4 tháng 7 2019

a, Chứng minh được OC là đường trung bình của hình thang AEFB nên C là trung điểm của EF. Chứng minh được AE=AH, BH=BF nên  C H 2 = HA.HB = AE.BF

b, Ta có BE ∩ (O) = {H} => FE = AH ≤ AB

=>  F E m a x = AB => C là điểm chính giữa AB

16 tháng 1 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (M; MH), theo tính chất hai tiếp tuyến cắt nhau, ta có:

AC = AH và BD = BH

Khi M thay đổi trên nửa đường tròn tâm O thì AC luôn bằng AH và BD luôn bằng BH

Suy ra: AC + BD = AH + BH = AB không đổi

28 tháng 12 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ABC nội tiếp trong đường tròn (O) có AB là đường kính nên góc (ACB) = 90 °

Tam giác ABC vuông tại C có CH ⊥ AB

Theo hệ thức liên hệ giữa đường cao và hình chiếu, ta có:

C H 2 = HA.HB     (3)

Xét hai tam giác ACH và ACE, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

CH = CE (tính chất đường phân giác)

AC chung

Suy ra : ∆ ACH =  ∆ ACE (cạnh huyền, cạnh góc vuông)

Suy ra: AH = AE     (4)

Xét hai tam giác BCH và BCF, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

CH = CF (= CE)

BC chung

Suy ra:  ∆ BCH =  ∆ BCF (cạnh huyền, cạnh góc vuông)

Suy ra: BH = BF     (5)

Từ (3), (4) và (5) suy ra:  C H 2  = AE.BF

23 tháng 6 2017

Đường tròn

30 tháng 6 2017

bạn ko chứng minh ABDC là hình thang ak?

9 tháng 1 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: AE // OC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vậy AC là tia phân giác của góc OAE hay AC là tia phân giác của góc BAE

3 tháng 1 2018

Bài 1:

a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.

Theo tính chất của hai tiếp tuyến cắt nhau ta có:

CM = CA; DM = DB;

∠O1 = ∠O2; ∠O3 = ∠O4

⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).

⇒ ∠OCD = 900

b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA

Tương tự:

DM = DB

⇒ CM + DM = CA + DB

⇒ CD = AC + BD.

c) Ta có OM ⊥ CD

Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển

OM2 = CM.DM

Mà OM = OA = OA = AB/2 và CM = AC; DM = BD

Suy ra AC.BD = AB2/2 = không đổi