Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MC là tiếp tuyến
MA là tiếp tuyến
Do đó: MC=MA
Xét (O) có
DC là tiếp tuyến
DB là tiếp tuyến
Do đó: DC=DB
Ta có: CM+DC=DM
nên MD=MA+BD
a) Xét (O) có
MA là tiếp tuyến có A là tiếp điểm(gt)
MC là tiếp tuyến có C là tiếp điểm(gt)
Do đó: MA=MC(Tính chất hai tiếp tuyến cắt nhau)
Xét (O) có
DC là tiếp tuyến có C là tiếp điểm(gt)
DB là tiếp tuyến có B là tiếp điểm(gt)
Do đó: DC=DB(Tính chất hai tiếp tuyến cắt nhau)
Ta có: CM+CD=MD(C nằm giữa M và D)
mà MC=MA(cmt)
và DC=DB(cmt)
nên MD=MA+BD(đpcm)
Ta có: MA=MC(cmt)
nên M nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OA=OC(=R)
nên O nằm trên đường trung trực của AC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra MO là đường trung trực của AC
hay MO⊥AC
Xét (O) có
ΔABC nội tiếp đường tròn(A,C,B∈(O))
AB là đường kính của (O)
Do đó: ΔABC vuông tại C(Định lí)
⇒CA⊥CB
Ta có: CA⊥CB(cmt)
MO⊥CA(cmt)
Do đó: BC//MO(Định lí 1 từ vuông góc tới song song)
Ta có: DC=DB(cmt)
nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: OB=OC(=R)
nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (3) và (4) suy ra OD là đường trung trực của BC
hay OD⊥BC
Ta có: BC//MO(cmt)
BC⊥OD(cmt)
Do đó: MO⊥OD(Định lí 2 từ vuông góc tới song song)
Xét ΔMOD có MO⊥OD(cmt)
nên ΔMOD vuông tại O(Định nghĩa tam giác vuông)
a: góc MAO+góc MCO=90+90=180 độ
=>MAOC nội tiếp
b: Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC
C là giao điểm 2 tiếp tuyến tại A và M \(\Rightarrow OC\) là trung trực AM
\(\Rightarrow E\) là trung điểm AM
Tương tự ta có OD là trung trực BM \(\Rightarrow F\) là trung điểm BM
\(\Rightarrow EF\) là đường trung bình tam giác ABM
\(\Rightarrow EF||AB\Rightarrow ONEF\) là hình thang (1)
Lại có O là trung điểm AB \(\Rightarrow OF\) là đường trung bình tam giác ABM
\(\Rightarrow OF=\dfrac{1}{2}AM=AE\)
Mà \(OF||AE\) (cùng vuông góc BM)
\(\Rightarrow AEFO\) là hình bình hành \(\Rightarrow\widehat{OFE}=\widehat{OAE}\)
Mà \(EN=AE=\dfrac{1}{2}AM\Rightarrow\Delta AEN\) cân tại E \(\Rightarrow\widehat{OAE}=\widehat{ANE}\)
\(\widehat{ANE}+\widehat{ONE}=180^0\Rightarrow\widehat{OFE}+\widehat{ONE}=180^0\)
Lại có \(\widehat{ONE}+\widehat{NEF}=180^0\) (2 góc trong cùng phía)
\(\Rightarrow\widehat{OFE}=\widehat{NEF}\)
\(\Rightarrow ONEF\) là hình thang cân