K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

n=4

22 tháng 11 2017

1/ \(2C^k_n+5C^{k+1}_n+4C^{k+2}_n+C^{k+3}_n\)

\(=2\left(C^k_n+C_n^{k+1}\right)+3\left(C^{k+1}_n+C^{k+2}_n\right)+\left(C^{k+2}_n+C^{k+3}_n\right)\)

\(=2C_{n+1}^{k+1}+3C_{n+1}^{k+2}+C_{n+1}^{k+3}\)

\(=2\left(C_{n+1}^{k+1}+C_{n+1}^{k+2}\right)+\left(C_{n+1}^{k+2}+C^{k+3}_{n+1}\right)\)

\(=2C_{n+2}^{k+2}+C_{n+2}^{k+3}=C_{n+2}^{k+2}+\left(C_{n+2}^{k+2}+C_{n+2}^{k+3}\right)=C_{n+2}^{k+2}+C_{n+3}^{k+3}\)

28 tháng 11 2017

Áp dụng ct:C(k)(n)=C(k)(n-1)+C(k-1)(n-1) có:
................C(k-1)(n-1)= C(k)(n) - C(k)(n-1)
tương tự: C(k-1)(n-2)= C(k)(n-1) - C(k)(n-2)
................C(k-1)(n-3)= C(k)(n-2) -C(k)(n-3)
.........................................
................C(k-1)(k-1)= C(k)(k) (=1)
Cộng 2 vế vào với nhau...-> đpcm

NV
22 tháng 12 2020

Giả sử có 1 nhóm người gồm 2n người, trong đó có n nam và n nữ.

Chọn n người từ 2n người đó, ta thực hiện theo 2 cách:

- Cách 1: chọn bất kì, có \(C_{2n}^n\) cách (1)

- Cách 2: giả sử trong n người được chọn có k nữ và \(n-k\) nam

Chọn k nữ từ n nữ, có \(C_n^k\) cách

Chọn \(n-k\) nam từ n nam, có \(C_n^{n-k}\) cách

Số cách thỏa mãn: \(\sum\limits^n_{k=0}C_n^kC_n^{n-k}=\sum\limits^n_{k=0}C_n^kC_n^k=\sum\limits^n_{k=0}\left(C_n^k\right)^2\) (2)

(1); (2) \(\Rightarrow\sum\limits^n_{k=0}\left(C_n^k\right)^2=C_{2n}^n\)

18 tháng 7 2018

ta có : \(Q=C^1_n+2\dfrac{C_n^2}{C_n^1}+...+k\dfrac{C^k_n}{C_n^{k-1}}+...+n\dfrac{C^n_n}{C_n^{n-1}}\)

\(\Leftrightarrow Q=\dfrac{n!}{1!\left(n-1\right)!}+2\dfrac{1!\left(n-1\right)!}{2!\left(n-2\right)!}+...+k\dfrac{\left(k-1\right)!\left(n-k+1\right)!}{k!\left(n-k\right)!}+...+\dfrac{n\left(n-1\right)!1!}{n!}\)

\(\Leftrightarrow Q=n+\dfrac{2\left(n-1\right)}{2}+...+\dfrac{k\left(n-k+1\right)}{k}+...+\dfrac{n}{n}\)

\(\Leftrightarrow Q=n+\left(n-1\right)+...+\left(n-k+1\right)+...+1\)

\(\Leftrightarrow Q=n^2-\left(1+\left(1+1\right)+\left(1+2\right)+...+\left(n-1\right)\right)\)

3 tháng 10 2020

Xét tập A có n phần tử

Ta sẽ đếm số tập con của chúng bằng hai cách:

-Cách 1:

+Số tập con có 0 phần tử là: \(C^0_n\) tập

+Số tập con có 1 phần tử là: \(C^1_n\) tập

...

+Số tập con có 0 phần tử là: \(C^n_n\) tập

Khi đó vế trái của đẳng thức cần chứng minh là tổng số tập con của tập đó

Cách 2: Xét tập B là tập con của tập A

Một phần tử i bất kì thuộc A có thể thuộc B hoặc không thuộc B nên phần tử i đó có 2 khả năng xảy ra. Làm tương tự với n-1 phần tử còn lại thì vế phải của đẳng thức cần chứng minh là số tập con của tập A

26 tháng 10 2020

Ta chứng minh bằng quy nạp.

Ta thấy công thức trên đúng với n = 1.

Giả sử nó đúng đến n. Ta chứng minh nó đúng với n + 1.

Nhận thấy VT là số tập hợp con của một tập hợp có n phần tử.

Nếu ta thêm 1 phần tử thì số tập hợp con tăng thêm chính bằng số tập hợp con của tập hợp đó.

Do đó số tập hợp con của một tập hợp có n + 1 phần tử là: \(2^n+2^n=2^{n+1}\).

Vậy công thức trên đúng với n + 1. Phép cm hoàn tất.