Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài số đã cho còn thiếu hàng chục ngàn và hàng đơn vị - gọi chữ số hàng chục ngàn là b, chữ số hàng đơn vị là e, ta có số sau: 5b389e
- Vì số chia hết cho 2 và cho 5 chữ số tận cùng bằng 0 nên e phải bằng 1.
5b3891
- Vì tổng các chữ số của 1 số chia hết cho 3 thì số đó chia hết cho 3 - vì số đó chia cho 3 phải dư 1 nên 5b3891 -> ( 5+b+3+8+9+1) chia hết cho 3+1
Suy ra: b = ( 5+b+3+8+9+1) chia hết cho 3 dư1
b = ( 5+2+3+8+9+1) chia hết cho 3 dư1
b = 2, hoặc 5, hoặc 8.
Vậy các số tìm được là: 523891; 553891; 583891.
Vì chia 5 mà dư 1 thì e có thể là 6 nhưng 6 lại chia hết cho 2, giả thiết này bị loại trừ.
Theo đầu bài số đã cho còn thiếu hàng chục ngàn và hàng đơn vị - gọi chữ số hàng chục ngàn là b, chữ số hàng đơn vị là e, ta có số sau: 5b389e
-Vì số chia hết cho 2 và cho 5 chữ số tận cùng bằng 0 nên e phải bằng 1.
5b3891
-Vì tổng các chữ số của 1 số chia hết cho 3 thì số đó chia hết cho 3 - vì số đó chia cho 3 phải dư 1 nên 5b3891 -> ( 5+b+3+8+9+1) chia hết cho 3+1
Suy ra: b = ( 5+b+3+8+9+1) chia hết cho 3 dư1
b = ( 5+2+3+8+9+1) chia hết cho 3 dư1
b = 2, hoặc 5, hoặc 8.
Vậy các số tìm được là: 523891; 553891; 583891.
Vì chia 5 mà dư 1 thì e có thể là 6 nhưng 6 lại chia hết cho 2, giả thiết này bị loại trừ.
Ta có số đó có dạng 5a389b
Để số đó chia hết cho 2 và 5 đều dư 1 thì b=1
Để số đó chia hết cho 3 dư 1 thì (5+a+3+8+9+1) :3 dư 1
Để (5+a+3+8+9+1) :3 dư 1 thì a\(\in\){2;5;8}
Vậy số đó là : 52389;55389;58389
Gọi số cần tìm có dạng là \(X=\overline{9ab}\)
Theo đề, ta có: X-1 chia hết cho 2 và X-3 chia hết cho 5 và X chia hết cho 3 và 100<=X<=999
=>b=3
=>X=\(\overline{9a3}\)
Theo đề, ta có: 9+a+3 chia hết cho 3
=>\(a\in\left\{0;3;6;9\right\}\)
Theo đầu bài số đã cho còn thiếu hàng chục ngàn và hàng đơn vị - gọi chữ số hàng chục ngàn là b, chữ số hàng đơn vị là e, ta có số sau: 5b389e
- Vì số chia hết cho 2 và cho 5 chữ số tận cùng bằng 0 nên e phải bằng 1. 5b3891
- Vì tổng các chữ số của 1 số chia hết cho 3 thì số đó chia hết cho 3 - vì số đó chia cho 3 phải dư 1 nên 5b3891 -> ( 5+b+3+8+9+1) chia hết cho 3+1
Suy ra: b = ( 5+b+3+8+9+1) chia hết cho 3 dư1
b = ( 5+2+3+8+9+1) chia hết cho 3 dư1
b = 2, hoặc 5, hoặc 8.
Vậy các số tìm được là: 523891; 553891; 583891.
Vì chia 5 mà dư 1 thì e có thể là 6 nhưng 6 lại chia hết cho 2, giả thiết này bị loại trừ.