K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

tối mk làm ,bây giờ bận rùi , bye, mk xem rùi, đề k sai

30 tháng 9 2016

m+n+p=15=>(m+n+p)^2=225

(m^2+n^2+p^2+mn+mp+np)=225

77+mn+mp+np=225

mn+mp+np=148

2 tháng 11 2018

help me

2 tháng 11 2018

1.Tính:

[(x+y)5-2(x+y)4 ] : [-5(x+y)3]

= -5(x+y)2 + \(\dfrac{2}{5}\)(x+y)

2.Tìm a để đa thức 24x3 -14x2 +23x+2a+4 \(⋮\) 4x+1

24x3 -14x2 +23x+2a+4 \(|^{4x+1}_{6x^2-5x+7}\)

24x3 +6x2

\(\overline{-20x^2}+23x+2a+4\)

-20x2 -5x

\(\overline{28x+2a+4}\)

28x +7

\(\overline{2a+11}\)

Để 24x3 -14x2 +23x+2a+4 \(⋮\) 4x+1 thì 2a+11=0 \(\Leftrightarrow\) a= \(\dfrac{11}{2}\)

3. Phân tích đa thức thành NT :

a, 12x3 -12x2 +3x = 3x(4x2 -4x+1) = 3x (2x+1)

b, x2.(x-1)+9(1-x) = x2 (x-1) -9(x-1) = (x-1)(x2-9)

=(x-1)(x-3)(x+3)

c,8(x-y)-x3 (x-y) = (x-y)(8-x3)= (x-y)(2-x)(4+2x+x2)

https://i.imgur.com/NftyOSo.jpg
https://i.imgur.com/lNuNLji.jpg

Câu 2: 

a: \(n^2-2n+5⋮n-1\)

\(\Leftrightarrow n^2-n-n+1+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)

b: \(4x^2-6x-16⋮x-3\)

\(\Leftrightarrow4x^2-12x+6x-18+2⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;2;-2\right\}\)

hay \(x\in\left\{4;2;5;1\right\}\)

Câu 3: 

a: \(\left(3x-8\right)\left(7x+10\right)-\left(2x-15\right)\left(3x-8\right)=0\)

\(\Leftrightarrow\left(3x-8\right)\left(7x+10-2x+15\right)=0\)

\(\Leftrightarrow\left(3x-8\right)\left(5x+25\right)=0\)

=>x=8/3 hoặc x=-5

b: \(\dfrac{\left(x^4-2x^2-8\right)}{x-2}=0\)(ĐKXĐ: x<>2)

\(\Leftrightarrow x^4-4x^2+2x^2-8=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2+2\right)=0\)

=>x+2=0

hay x=-2

a: Ta có: \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)

\(=\left(x^4-4\right)\left[\left(x^2+2\right)^2-4x^2\right]\)

\(=\left(x^4-4\right)\left(x^4+4x^2+4-4x^2\right)\)

\(=\left(x^4-4\right)\cdot\left(x^4+4\right)\)

\(=x^8-16\)

b: Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2+3x^2-3x\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-x^2+2x-1+3x^2-3x\left(x^2-1\right)\)

\(=3x^2+4x-3x^3+3x\)

\(=-3x^3+3x^2+7x\)

28 tháng 5 2020

a) \(3\left(x-4\right)+5=2\left(x+1\right)-8\)

\(\Leftrightarrow3x-12+5=2x+2-8\)

\(\Leftrightarrow x=1\)

Vậy : \(S=\left\{1\right\}\)

b) \(5\left(x+1\right)^2+2x=5x^2-3\)

\(\Leftrightarrow5x^2+10x+5+2x=5x^2-3\)

\(\Leftrightarrow12x=-8\)

\(\Leftrightarrow x=-\frac{2}{3}\)

Vậy : \(S=\left\{-\frac{2}{3}\right\}\)

c) \(\frac{4\left(x+2\right)}{15}=\frac{13x-9}{40}\)

\(\Leftrightarrow32\left(x+2\right)=3\left(13x-9\right)\)

\(\Leftrightarrow32x-39x=-27-64\)

\(\Leftrightarrow-7x=-91\)

\(\Leftrightarrow x=13\)

Vậy : \(S=\left\{13\right\}\)

Phương trình bậc nhất một ẩn và cách giải

1 tháng 4 2020

e, 3x(2-x) =15(x-2)

\(\Leftrightarrow3x\left(2-x\right)-15\left(x-2\right)=0\)

\(\Leftrightarrow-3x\left(x-2\right)-15\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-3x-15\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\-3x-15=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

Vậy..

f, (x+5)(x+4)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)

Vậy..

g, x(x+4)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

,h, (2x -4)(x-2)=0

\(\Leftrightarrow2\left(x-2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2-1\right)=0\)

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

i, (x+1/5)(2x-3)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{5}=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{5}\\x=\frac{3}{2}\end{matrix}\right.\)

k, x²-4x=0

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

m, 4x²-1=0

\(\Leftrightarrow\left(2x\right)^2-1^2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)

n, x²-6x+9=0

\(\Leftrightarrow x^2-2.x.3+3^2=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\)

<=> x=3

l, (3x-5)²-(x+4)²=0

\(\Leftrightarrow\left(3x-5-x-4\right)\left(3x-5+x+4\right)=0\)

\(\Leftrightarrow\left(2x-9\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-9=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=9\\4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{9}{2}\\x=\frac{1}{4}\end{matrix}\right.\)

Vậy ..

o, 7x(x+2)-5(x+2)=0

\(\Leftrightarrow\left(x+2\right)\left(7x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\7x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\7x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=\frac{5}{7}\end{matrix}\right.\)

Vậy....

p, 3x(2x-5)-4x+10=0

\(\Leftrightarrow3x\left(2x-5\right)-\left(4x-10\right)=0\)

\(\Leftrightarrow3x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy...

q, (2-2x)-x²+1=0

\(\Leftrightarrow2\left(1-x\right)-\left(x^2-1^2\right)=0\)

\(\Leftrightarrow2\left(1-x\right)-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow2\left(1-x\right)+\left(1-x\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(2+x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy ....

r, x(1-3x)=5(1-3x)

\(\Leftrightarrow x\left(1-3x\right)-5\left(1-3x\right)=0\)

\(\Leftrightarrow\left(1-3x\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-3x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x=-1\\x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\x=5\end{matrix}\right.\)

s, 2x-3/4+x+1/6=3

\(\Leftrightarrow x-\frac{7}{12}=3\Leftrightarrow x=3+\frac{7}{12}=\frac{43}{12}\)

1 tháng 4 2020

r, x(1-3x)=5(1-3x)

➜x(1-3x)-5(1-3x)=0

➜(x-5)(1-3x)=0

\(\left[{}\begin{matrix}x-5=0\\1-3x=0\end{matrix}\right.\text{➜}\left[{}\begin{matrix}x=5\\x=\frac{1}{3}\end{matrix}\right.\)

Mk lười lắm mai nha!!!~~~~~~~~~~~~