Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Dễ thấy mệnh đề P: “35 là số có hai chữ số” là mệnh đề đúng nên ta chỉ cần tìm mệnh đề sai trong các đáp án.
Từ các đáp án bài cho ta thấy chỉ có mệnh đề Q: “4 là số nguyên tố” là mệnh đề sai.
(P ⇒Q): “Nếu a có tận cùng bằng 0 thì a chia hết cho 5”. Mệnh đề đảo (Q⇒P): “Nếu a chia hết cho 5 thì a có tận cùng bằng 0”.
ta thấy 1 số chính phương không bao giờ có đuôi là 2;3;7;8
Mà nếu mệnh đề (2) đúng thì n+8=...2 => mệnh đề (1) sai và n-1=...3 => mệnh đề (3) sai
Nhưng chỉ có 1 mệnh đề sai nên chỉ có mệnh đề (2) là thỏa mãn
Vậy n+8 và n+1 là số chính phương
\(\Rightarrow\left(n+8\right)-\left(n-1\right)=9\)
\(\Leftrightarrow\left(n+8\right)^2-\left(n-1\right)^2=9^2\)
\(\Leftrightarrow\left[\left(n+8\right)-\left(n-1\right)\right]\left[\left(n+8\right)+\left(n-1\right)\right]=9^2\)
\(\Leftrightarrow9\left(2n+7\right)=9^2\)
\(\Leftrightarrow2n-7=9\)
\(\Leftrightarrow n=8\)
Vậy n=8 thì mới thỏa mãn mệnh đề (1) và (3)
Đáp án: C
A: “ số 20 chia hết cho 5” là mệnh đề đúng.
B: “ số 25 chia hết cho 3” là mệnh đề sai.
C: “số 13 là số nguyên tố” là mệnh đề đúng.
C đúng, A đúng nên C ⇒ A đúng
C ⇒ A đúng, B sai nên (C ⇒ A)⇒ B là mệnh đề sai.
a) \(\left(P\Rightarrow Q\right):\) "Nếu a có tận cùng bằng 0 thì a chia hết cho 5".
Mệnh đề đảo \(\left(Q\Rightarrow P\right):\)"Nếu a chia hết cho 5 thì a có tận cùng bằng 0"
b) \(\left(P\Rightarrow Q\right):\) đúng. \(\left(Q\Rightarrow P\right):\) sai
Đáp án A
Dễ thấy mệnh đề P: “5 là số có hai chữ số” là mệnh đề sai nên mệnh đề Q là mệnh đề nào cũng luôn thỏa mãn P => Q là mệnh đề đúng.
Vậy không có mệnh đề nào thỏa mãn bài toán.