Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
a: \(C=\dfrac{5x+1+\left(2x-1\right)\left(x-1\right)+2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2x^2+7x+3+2x^2-2x-x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{4}{x-1}\)
b: x=4 thì C=4/(4-1)=4/3
Khi x=-4 thì C=4/(-4-1)=-4/5
c: C>0
=>x-1>0
=>x>1
a: \(=\dfrac{x+1-4}{x+1}\cdot\dfrac{9-x^2+2x^2+2x-8}{-\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x-3}{-\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x^2+2x+1}{x+1}\)
\(=\dfrac{-x-1}{x+3}\)
b: Khi x=-5 thì \(M=\dfrac{-5-1}{-5+3}=\dfrac{-6}{-2}=3\)
c: Để M nguyên thì -x-1 chia hết cho x+3
=>-x-3+2 chia hết cho x+3
=>\(x+3\in\left\{1;-1;2;-2\right\}\)
=>\(x\in\left\{-2;-4;-5\right\}\)
a. \(A=\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\left(ĐKXĐ:x\ne1;x\ne-3\right)\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{x+3}{x-1}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\left(\dfrac{2-3x}{\left(x-1\right)\left(x+3\right)}+\dfrac{\left(x+3\right)^2}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+3\right)}\right):\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{2-3x+x^2+6x+9-x^2+1}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}:\dfrac{3x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{3x+12}{\left(x-1\right)\left(x+3\right)}.\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{3x+12}=\dfrac{x^2+x+1}{x+3}\)
\(M=A.B=\dfrac{x^2+x+1}{x+3}.\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x-2}{x+3}\)
b. -Để M thuộc Z thì:
\(\left(x^2+x-2\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x^2+3x-2x-6+4\right)⋮\left(x+3\right)\)
\(\Rightarrow\left[x\left(x+3\right)-2\left(x+3\right)+4\right]⋮\left(x+3\right)\)
\(\Rightarrow4⋮\left(x+3\right)\)
\(\Rightarrow x+3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x\in\left\{-2;-1;1;-4;-5;-7\right\}\)
c. \(A^{-1}-B=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{x^3-1}\)
\(=\dfrac{x+3}{x^2+x+1}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x+3x-3-x^2-x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)
\(=\dfrac{1}{x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}}=\dfrac{1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
\(Max=\dfrac{4}{3}\Leftrightarrow x=\dfrac{-1}{2}\)
ĐK: \(x\ne0;\pm1\)
\(A=\left(\dfrac{1}{x\left(x+1\right)}-\dfrac{2-x}{x+1}\right).\dfrac{3x}{1-2x+x^2}\)
\(A=\left(\dfrac{1-x\left(2-x\right)}{x\left(x+1\right)}\right).\dfrac{3x}{1-2x+x^2}=\dfrac{\left(1-2x+x^2\right)}{x\left(x+1\right)}\dfrac{3x}{1-2x+x^2}=\dfrac{3}{x+1}\)
b/ Để \(A\in Z\Rightarrow3⋮\left(x+1\right)\Rightarrow x+1=Ư\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(x+1=-3\Rightarrow x=-4\)
\(x+1=-1\Rightarrow x=-2\)
\(x+1=1\Rightarrow x=0\left(l\right)\)
\(x+1=3\Rightarrow x=2\)
c/ \(A< 0\Leftrightarrow\dfrac{3}{x+1}< 0\Leftrightarrow x+1< 0\Rightarrow x< -1\)
a: \(A=\dfrac{2x+1}{\left(x-1\right)\left(x-2\right)}+\dfrac{x+1}{x-1}-\dfrac{x^2+5}{\left(x-1\right)\left(x-2\right)}+\dfrac{x^2+x}{x-1}\)
\(=\dfrac{2x+1-x^2-5}{\left(x-1\right)\left(x-2\right)}+\dfrac{x+1+x^2+x}{x-1}\)
\(=\dfrac{-x^2+2x-4+\left(x^2+2x+1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)
\(=\dfrac{-x^2+2x-4+x^3-2x^2+2x^2-4x+x-2}{\left(x-1\right)\left(x-2\right)}\)
\(=\dfrac{x^3-x^2-x-6}{\left(x-1\right)\left(x-2\right)}\)
b: Để A là số nguyên thì \(x^3-3x^2+2x+2x^2-6x+4+3x-10⋮\left(x-1\right)\left(x-2\right)\)
=>\(3x-10⋮x^2-3x+2\)
Xin lỗi bạn, đến đây mình thua rồi
Rút gọn:
\(M=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2x^2}{x^2-x}\right)\)
\(M=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x^2-1+1+2x^2}\)
\(M=\frac{x\left(x+1\right)}{x-1}\cdot\frac{x}{3x^3}\)
\(M=\frac{x+1}{3x\left(x-1\right)}\)