K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

Câu 1:

a)

\(BM=MC=\frac{1}{2}BC\) (M là trung điểm của BC)

\(AN=ND=\frac{1}{2}AD\) (N là trung điểm của AD)

\(BC=AD\) (ABCD là hình bình hành)

\(\Rightarrow AN=ND=BM=MC\) (1)

mà ND // BM

=> BMDN là hình bình hành

=> BN // MD (2)

=> MDKB là hình thang

b)

MC = AN (theo 1)

mà MC // AN (ABCD là hình bình hành)

=> AMCN là hình bình hành

=> AM // CN (3)

Từ (2) và (3)

=> MPNQ là hình bình hành (4)

BM = AN (theo 1)

mà BM // AN (ABCD là hình bình hành)

=> ABMN là hình bình hành

mà AB = BM \(\left(=\frac{1}{2}BC\right)\)

=> ABMN là hình thoi

=> AM _I_ BN

=> MPN = 900 (5)

Từ (4) và (5)

=> MPNQ là hình chữ nhật

c)

MPNQ là hình vuông

<=> MN là tia phân giác của PMQ

mà MN là đường trung tuyến của tam giác MDA vuông tại M (N là trung điểm của AD; MPNQ là hình chữ nhật)

=> Tam giác MDA vuông cân tại M có MN là đường trung tuyến

=> MN là đường cao của tam giác MDA

=> MNA = 900

mà MNA = ABM (ABMN là hình thoi)

=> ABM = 900

mà ABCD là hình bình hành

=> ABCD là hình chữ nhật

Câu 2:

a)

\(AE=EB=\frac{AB}{2}\) (E là trung điểm của của AB)

\(CF=FD=\frac{CD}{2}\) (F là trung điểm của của CD)

mà AB = CD (ABCD là hình bình hành)

=> AE = EB = CF = FD (1)

mà AE // CF (ABCD là hình bình hành)

=> AECF là hình bình hành

b)

AE = FD (theo 1)

mà AE // FD (ABCD là hình bình hành)

=> AEFD là hình bình hành

mà DA = AE \(\left(=\frac{1}{2}AB\right)\)

=> AEFD là hình thoi

=> AF _I_ ED

=> EMF = 900 (2)

EB = FD (theo 1)

mà EB // FD (ABCD là hình bình hành)

=> EBFD là hình bình hành

=> EM // NF

mà EN // MF (AECF là hình bình hành)

=> EMFN là hình bình hành

mà EMF = 900 (theo 2)

=> EMFN là hình chữ nhật

c)

EMFN là hình vuông

<=> EF là tia phân giác của MEN

mà EF là đường trung tuyến của tam giác ECD vuông tại E (F là trung điểm của CD; EMFN là hình chữ nhật)

=> Tam giác ECD vuông cân tại E có EF là đường trung tuyến

=> EF là đường cao của tam giác ECD

=> EFD = 900

mà EFD = DAE (AEFD là hình thoi)

=> DAE = 900

mà ABCD là hình bình hành

=> ABCD là hình chữ nhật

6 tháng 12 2015

a) Chứng minh tứ giác MBKD là hình thang.( bạn tự vẽ hình nhé!)
- Đầu tiên CM tứ giác MBND là hình bình hành.
Vì ABCD là hình bình hành  AD = BC  AN = ND = BM = MC
Và  AD // BC=>  ND // BM
Xét tứ giác MBND, ta có:
ND // BM 
ND = BM
 Tứ giác MBND là hình bình hành. 
 NB // MD . Mà NB giao với MD = {K}=>  B, N , K thẳng hàng.
Xét tứ giác MBKD, ta có:
NB // MD
B, N , K thẳng hàng
=> MD // BK
 =>Tứ giác MBKD là hình thang ( đpcm ).

b)
Vì P thuộc BK, Q thuộc MD mà BK // MD  QM // PN ( 1 )
Vì P thuộc AM, Q thuộc NC  PM // QN (2)
Từ (1), (2)=>  PMQN là hình bình hành. ( 3 )
Theo CM ở câu a)  ANMB là hình thoi ( có 4 cạnh bằng nhau )
 AM vuông góc với BN. (4)
Từ (3), (4)  PMQN là hình chữ nhật.
c) Để PMQN là hình vuông thì hình bình hành phải có thêm điều kiện là góc A = 90o
Nếu A = 90o  thì tứ giác ANMB là hình vuông=>  AM vuông góc với BN
Theo tính chất đường chéo của hình vuông=>  PN = PM
 Hình chữ nhật PMQN có 2 cạnh kề bằng nhau nên nó sẽ là hình vuông ( đpcm )

6 tháng 12 2015

 

của luckybaby_98 trên diễn đàn học mãi giống y chang luôn, mih cx có nick trên diễn đàn học mãi mak

a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)

\(DN=NC=\dfrac{DC}{2}\)(N là trung điểm của DC)

mà AB=DC(Hai cạnh đối trong hình bình hành ABCD)

nên AM=MB=DN=NC

Xét tứ giác AMCN có 

AM//CN(AB//CD, M∈AB, N∈CD)

AM=CN(cmt)

Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét tứ giác AMND có 

AM//ND(AB//CD, M∈AB, N∈CD)

AM=ND(cmt)

Do đó: AMND là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Ta có: \(AB=2\cdot AM\)(M là trung điểm của AB)

mà \(AB=2\cdot AD\)(gt)

nên AM=AD

Hình bình hành AMND có AM=AD(cmt)

nên AMND là hình thoi(Dấu hiệu nhận biết hình thoi)

⇒Hai đường chéo AN và DM vuông góc với nhau tại trung điểm của mỗi đường(Định lí hình thoi)

hay AN⊥DM(đpcm)

c) Ta có: AN và DM vuông góc với nhau tại trung điểm của mỗi đường(cmt)

mà AN cắt DM tại E(gt)

nên E là trung điểm chung của AN và DM

Xét tứ giác BMNC có 

BM//NC(AB//CD, M∈AB, N∈CD)

BM=NC(cmt)

Do đó: BMNC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo BN và MC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà BN cắt MC tại F(gt)

nên F là trung điểm chung của MC và BN

Ta có: \(EN=\dfrac{AN}{2}\)(E là trung điểm của AN)

\(MF=\dfrac{MC}{2}\)(F là trung điểm của MC)

mà AN=MC(Hai cạnh đối trong hình bình hành AMCN)

nên EN=MF

Ta có: AN//MC(Hai cạnh đối trong hình bình hành AMCN)

mà E∈AN(cmt)

và F∈MC(cmt)

nên EN//MF

Ta có: AN⊥MD(cmt)

mà AN cắt MD tại E(gt)

nên NE⊥ME tại E

hay \(\widehat{MEN}=90^0\)

Xét tứ giác EMFN có 

EN//MF(cmt)

EN=MF(cmt)

Do đó: EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành EMFN có \(\widehat{MEN}=90^0\)(cmt)

nên EMFN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒EF=MN(Hai đường chéo trong hình chữ nhật EMFN)

10 tháng 1 2021

Bạn ơi bài này dễ mừhihi

            

a: Xét tứ giác BMDN có 

BM//ND

BM=ND

Do đó: BMDN là hình bình hành

Suy ra: MD//BN

27 tháng 9 2018