Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua A kẻ đường thẳng vuông góc với AM cắt tia BC tại E.
Tam giác AEM vuông tại A có \(AB\perp EM\)
Ta có: \(S_{AEM}=\dfrac{1}{2}AE.AM=\dfrac{1}{2}AB.ME\)
\(\Rightarrow AE.AM=AB.ME\\ \Rightarrow\dfrac{1}{AB}=\dfrac{ME}{AE.AM}\\ \Rightarrow\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}\left(1\right)\)
Áp dụng đl pytago vào tam giác vuông AEM:
\(AE^2+AM^2=ME^2\)
Thay vào (1) ta có:
\(\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}=\dfrac{AE^2+AM^2}{AE^2.AM^2}=\dfrac{1}{AE^2}+\dfrac{1}{AM^2}\)
Mà AE = AN nên: \(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
a: Xét ΔABM vuông tại B và ΔADN vuông tại D có
AB=AD
góc BAM=góc DAN
=>ΔABM=ΔADN
=>AM=AN
=>ΔAMN vuông cân tại A
b: 1/AM^2+1/AE^2
=1/AN^2+1/AE^2
=1/AD^2 ko đổi
Từ A kẻ đường thẳng vuông góc với AN cắt CD tại Q
Ta có: \(\angle MAQ+\angle MCQ=90+90=180\Rightarrow AMCQ\) nội tiếp
\(\Rightarrow\angle AMQ=\angle ACQ=45\) mà \(\Delta MAQ\) vuông tại A
\(\Rightarrow\Delta MAQ\) vuông cân tại A \(\Rightarrow AM=AQ\)
Áp dụng hệ thức lượng vào tam giác vuông \(QAN\) có \(AD\bot NQ\)
\(\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AQ^2}+\dfrac{1}{AN^2}\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
a) + ΔABM = ΔADN ( g.c.g )
=> AM = AN
b) + ΔANI vuông tại A, đg cao AD
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{AN^2}+\frac{1}{AI^2}\) ( theo hệ thức lượng trog Δ vuông )
\(\Rightarrow\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AI^2}\)
Lời giải:
a)
Xét tam giác $AND$ và $AMB$ có:
\(\widehat{ADN}=\widehat{ABM}=90^0\)
\(\widehat{DAN}=\widehat{BAM}(=90^0-\widehat{DAM})\)
\(\Rightarrow \triangle AND\sim \triangle AMB(g.g)\Rightarrow \frac{AN}{AM}=\frac{AD}{AB}=1\) (do $ABCD$ là hình vuông nên $AB=AD$)
\(\Rightarrow AM=AN\) (đpcm)
b)
Ta thấy $MC\parallel AD$ nên áp dụng định lý Ta-let:
\(\frac{AM}{AI}=\frac{CD}{DI}\Rightarrow AM=\frac{AI.CD}{DI}\)
Từ đây kết hợp với điều kiện $AB=AD=CD$ và định lý Pitago ta có:
\(\Rightarrow \frac{1}{AM^2}+\frac{1}{AI^2}=\frac{DI^2}{AI^2.CD^2}+\frac{1}{AI^2}=\frac{DI^2+CD^2}{AI^2.CD^2}=\frac{DI^2+AD^2}{AI^2.AB^2}=\frac{AI^2}{AI^2.AB^2}=\frac{1}{AB^2}\) (đpcm)
bạn tự hình nha
đẳng thức cần chứng minh tương đương
\(1=\dfrac{AB^2}{AM^2}+\dfrac{AB^2}{AN^2}\left(@\right)\)
vậy để c/m bài toán ta cần c/m (@) ta có
\(\dfrac{AB}{AM}=\dfrac{CN}{MN}\left(thales\right)\Rightarrow\dfrac{AB^2}{AM^2}=\dfrac{CN^2}{MN^2}\left(1\right)\)
và AB=AD nên
\(\dfrac{AB}{AN}=\dfrac{AD}{AN}=\dfrac{CM}{MN}\left(thales\right)\Rightarrow\dfrac{AB^2}{AN^2}=\dfrac{CM^2}{MN^2}\left(2\right)\)
áp dụng định lí pythagore cho tam giác MCN vg tại C
\(CM^2+CN^2=MN^2\)
cộng 2 vế của (1) và (2) ta có
\(\dfrac{AB^2}{AM^2}+\dfrac{AB^2}{AN^2}=\dfrac{CN^2}{MN^2}+\dfrac{CM^2}{MN^2}=\dfrac{CM^2+CN^2}{MN^2}=\dfrac{MN^2}{MN^2}=1\left(\left(@\right)lđ\right)\)
vậy bài toán đc c/m
nếu có j thắc mắc ib mình giải thích cho