Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một bài đã làm không xong mà bạn ra hai bài thì ............
Bài 1: Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Bài làm
ADBCNM
a, Vì M là trung điểm của BC, N là trung điểm của AD .
⇒⇒ MN là đường trung bình của hình thang ABCD .
⇒MN⇒MN//ABAB//CDCD
mà theo gt Aˆ=900=>AB⊥ADA^=900=>AB⊥AD
=>MN⊥AD=>MN⊥AD
Trong tam giác MAD có :
MN là đường trung trực ( cmt )
MN là đường trung tuyến ( vì N là trung điểm của AD )
⇒ΔMAD⇒ΔMAD cân tại M .
b,Có ΔMADΔMAD cân tại M −>MADˆ=MDAˆ−>MAD^=MDA^
mà Aˆ=DˆA^=D^
=>Aˆ−MADˆ=Dˆ−MDAˆ=>A^−MAD^=D^−MDA^
=>MABˆ=MDCˆ(đpcm)=>MAB^=MDC^(đpcm).
a) từ me vuông góc fc ab vuông góc fc=> me song song ab
=> mn song song ab => mn song song dc (1)
mà ab song song dc (do abcd là hbh)
từ ad ss bc (do .....)
=> md sscn (2) => ma ss bn (5)
từ (1)(2) => mndc là hbh (..) (3)
từ ab =2ad => ab=am=mdmà ab =dc (..) => md=dc (4)_
từ (3)(4) => mndc là hình thoi (...)
b) từ ne ss ab (cmt)
=> ne ss bf
mà nb = nc => fe=ec => e là tđ cf
c) từ abcd là hbh => a = dcb =60
từ mn ss ab và (5) => abnm là hbh (..)
ta có : mcd= 60\ 2 = 30
mà dcf + mcf +mcd
90=30 + mcf
mcf = 60 (6)
trong tam giác mfc có me là đcao đồng thời là đường tt
=> tam giác mfc cân tại M (7)
từ (6)(7) => mfc đều
d)từ fmc đều => fm=fc=> f thuộc trung trực mc
từ mn =nc => n thuộc trung trực mc
từ dm =dc => d thuộc trung trực mc
từ 3 ý trên => f,n,d thẳng hàng
(nếu đúng mình xin 1 tích nha :>> )
Giải thích các bước giải:
Ta có tứ giác ABCD là hbh
=> AD=BC; AD//BC
Mà M và N là trung điểm của AD và BC
=> MD=NC
Xét tứ giác MNCD có ;
MD//NC
MD=NC
=> Tứ giác MNCD là hbh
Mà MD=CD=AD/2
=> Tứ giác MNCD là hình thoi
b) Ta có tứ giác MNCD là hình thoi
=> CD//MN
Xét ΔBFC có: EN//BF
N là trung điểm của BC
=> EN là đườngtrung bình của tam giác BFC
=> E là trung điểm của CF
c) Ta có tứ giác MNCD là hình thoi
=> CM là tia phân giác của gốc BCD
=> Góc BCA=Góc BCD/2=60/2=30
Xét tam giác BFC có NE//BF
NE⊥FC
=> BF⊥FC
=> Góc BCF=90- góc FBC=90-góc BAD=30
=> Góc FCM=Góc FCB+ góc BCM=60
Xét tam giác MCF có ME vừa là đường cao vừa là trung tuyến
=> ΔMCF cân tại M
Mà góc MCF=60
=>ΔMCF đều
d) Ta có : FM=FC( do ΔMCF đều) => F∈ trung trực của MC
DM=DC(=AD/2) =>D∈trung trực của MC
Có NC=NM=> N∈trung trực của MC
=> F;N;D cùng thuộc trung trực của MC
=> F;N;D thẳng hàng
Gọi H là trung điểm của AD
Xét hình thang ABCD có
H là trung điểm của AD
M là trung điểm của BC
Do đó: HM là đường trung bình của hình thang ABCD
Suy ra: HM//AB//CD
hay HM\(\perp\)AD
Xét ΔMAD có
MH là đường trung tuyến ứng với cạnh AD
MH là đường cao ứng với cạnh AD
Do đó: ΔMAD cân tại M