K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ∆ACD và ∆BDC ta có :

DC chung

BC = AD (ABCD là hình thang cân )

ADC = BCD ( ABCD là hình thang cân)

=> ∆ACD = ∆BDC (c.g.c)

=> BDC = ACD (tg ứng) 

=> ∆DOC cân tại O

=> OC = OD

Mà AB//DC 

ABO = ODC ( so le trong) 

BAO = OCN (so le trong) 

Mà BDC = ACD (cmt)

=> OAB = ABO 

=> ∆AOB cân tại O 

=> OA = OB 

b) Xét ∆OND và ∆ONC ta có 

OC = OD (cmt)

ODC = ONC (cmt)

ON chung 

=> ∆OND = ∆ONC (c.g.c) 

=> DN = NC(1)

Mà OND + ONC = 180 độ( kề bù) 

Mà OND = ONC = 180/2 = 90 độ

=> ON vuông góc với AC(2)

Từ (1) và (2) ta có ∆ cân AOB có trung trực OM đồng thời có trung tuyến OM (3)

Chứng minh tương tự ta có :

∆OMA = ∆OMB 

=> AM = MB(4)

=> OMB + OMA = 180 độ(kề bù )

=> OMB = OMA = 180/2 = 90 độ

=> OM vuông góc với AB(5)

Từ (4) và(5) ta có :∆ cân DOC có trung trực ON đồng thời là trung tuyến ON (6)

Từ (3) và (5) => M , O , N thẳng hàng

13 tháng 11 2021

alodgdhgjkhukljhkljyutfruftyhf