Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ∆ACD và ∆BDC ta có :
DC chung
BC = AD (ABCD là hình thang cân )
ADC = BCD ( ABCD là hình thang cân)
=> ∆ACD = ∆BDC (c.g.c)
=> BDC = ACD (tg ứng)
=> ∆DOC cân tại O
=> OC = OD
Mà AB//DC
ABO = ODC ( so le trong)
BAO = OCN (so le trong)
Mà BDC = ACD (cmt)
=> OAB = ABO
=> ∆AOB cân tại O
=> OA = OB
b) Xét ∆OND và ∆ONC ta có
OC = OD (cmt)
ODC = ONC (cmt)
ON chung
=> ∆OND = ∆ONC (c.g.c)
=> DN = NC(1)
Mà OND + ONC = 180 độ( kề bù)
Mà OND = ONC = 180/2 = 90 độ
=> ON vuông góc với AC(2)
Từ (1) và (2) ta có ∆ cân AOB có trung trực OM đồng thời có trung tuyến OM (3)
Chứng minh tương tự ta có :
∆OMA = ∆OMB
=> AM = MB(4)
=> OMB + OMA = 180 độ(kề bù )
=> OMB = OMA = 180/2 = 90 độ
=> OM vuông góc với AB(5)
Từ (4) và(5) ta có :∆ cân DOC có trung trực ON đồng thời là trung tuyến ON (6)
Từ (3) và (5) => M , O , N thẳng hàng