Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình thang ABCD
=> AD=BC = 3cm ( định lí 1 )
AB//CD ( ABCD là hình thang cân )
=> góc B1 = góc D2 ( SLT )
góc D1 = góc D2 ( gt )
=> góc B1 = góc D1
=> tg ABD cân tại A
=> AD=AB= 3cm
tg DBC vuông ở B
hình thang cân ABCD
=> góc D = góc C
2 lần góc D1 = góc C
=> góc DBC = góc D1 + 2 lần góc D1 = 90 độ
3 lần góc D1 = 90 độ
=> góc D1 = 900 : 3
= 300
=> góc C = 900 - góc D1 = 900 - 300 = 600
Gọi DA giao CB tại O
tg ODC có DB là pgiác
BD vuông góc với Oc
=> tg ODC cân ở D
lại có góc C = 60 độ
=> tg OCD đều
=> CD = CO
mà tg ODC đều nên DB là đường phân giác đồng thời là đường trung tuyến
=> OB= BC
CD= CO = OB+BC
mà OB = BC ( cmt )
=> CĐ= CƠ = 2CB = 2.3 = 6 ( cm )
Chu vi của hình thang cân ABCD là
AB+BC+AD+CD = 3+3+3+6= 15 (cm )
a) DDBC vuông có B C D ^ = 2 B D C ^ nên A D C ^ = B C D ^ = 60 0 và D A B ^ = C B A ^ = 120 0
b) Tính được DC = 2.BC = 12cm, suy ra PABCD = 30cm.
Hạ đường cao BK, ta có BK = 3 3 c m .
Vậy SABCD = 27 3 c m 2