K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2020

\(\left|\overrightarrow{MA}+\overrightarrow{MC}-\overrightarrow{MN}\right|=\left|\overrightarrow{MA}+\overrightarrow{MD}+\overrightarrow{DC}-\overrightarrow{MN}\right|\)\(=\left|\overrightarrow{DC}-\frac{1}{2}\overrightarrow{DC}-\frac{1}{2}\overrightarrow{AB}\right|=\left|\overrightarrow{DC}-\frac{3}{4}\overrightarrow{DC}\right|=\frac{1}{A}DC=\frac{a}{2}\)

16 tháng 1 2021

Tham khảo:

Cho hình thang vuông ABCD

23 tháng 12 2020

1.

Dựng \(\overrightarrow{DB'}=\overrightarrow{CB}\)

\(k\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{DB}\)

\(=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{DA}+\overrightarrow{AB}\)

\(=2\overrightarrow{AB}+\overrightarrow{B'D}+\overrightarrow{DA}\)

\(=2\overrightarrow{AB}+\overrightarrow{B'A}\)

\(=2\overrightarrow{AB}+2\overrightarrow{AB}=4\overrightarrow{AB}\)

\(\Rightarrow k=4\)

23 tháng 12 2020

Gọi M là trung điểm IB

\(\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\left|2\overrightarrow{AM}\right|=2AM\)

Ta có \(\overrightarrow{AM}^2=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2=MI^2+IA^2-2MI.IA.cos90^o=\dfrac{1}{16}a^2+\dfrac{3}{4}a^2=\dfrac{13}{16}a^2\)

\(\Rightarrow AM=\dfrac{\sqrt{13}}{4}a\Rightarrow\left|\overrightarrow{AB}+\overrightarrow{AI}\right|=\dfrac{\sqrt{13}}{2}a\)

NV
23 tháng 12 2020

\(\overrightarrow{MN}=\overrightarrow{MC}+\overrightarrow{CN}=\dfrac{3}{4}\overrightarrow{AC}-\dfrac{1}{2}\overrightarrow{AB}=\dfrac{3}{4}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)-\dfrac{1}{2}\overrightarrow{AB}\)

\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\)

\(\Rightarrow a+b=\dfrac{1}{2}+\dfrac{3}{4}=...\)