Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M;N lần lượt là trđ của AD; BC (gt)
=> MN là đtb của ht ABCD
=> MN // AB
xét tg ABD có MP // AB => MP/AB = DM/DA mà DM/DA = 1/2 do M là trđ của AD
xé tg ABC có QN // AB => QN/AB = CN/CB mà CN/CB = 1/2 do N là trđ của BC
=> MP/AB = QN/AB = 1/2
=> MP = QN (1)
MP/AB = QN/AB = 1/2 => mp = 1/2ab = qn
có MN là đtb của hình thang ABCD => MN = (AB + DC) /2
=> MP + QP + QN = AB/2 + CD/2
=> AB/2 + AB/2 + PQ = AB/2 + CD/2
=> PQ = CD/2 - AB/2
mà CD/2 = AB (gt)
=> PQ = AB - AB/2 = AB/2
vậy MP = PQ = QN
Hình bên dưới nha.
Giải thích các bước giải:
M;N lần lượt là trung điểm của AD,BCM;N lần lượt là trung điểm của AD,BC
⇒MN là đường trung bình của hình thang ABCD⇒MN là đường trung bình của hình thang ABCD
⇒MN=2+52=3,5;MN//AB//CD⇒MN=2+52=3,5;MN//AB//CD
MN//AB⇒ME//AB mà M là trung điểm ABMN//AB⇒ME//AB mà M là trung điểm AB
⇒ME là đường trung bình của ΔABD⇒ME là đường trung bình của ΔABD
⇒ME=AB2=1⇒ME=AB2=1
:Chứng minh tương tự:NF là đường trung bình của ΔACB:Chứng minh tương tự:NF là đường trung bình của ΔACB
⇒NF=AB2=1⇒NF=AB2=1
⇒EF=MN−ME−MF=3,5−1−1=1,5⇒EF=MN−ME−MF=3,5−1−1=1,5
Vậy EF=1,5Vậy EF=1,5
Xét hình thang ABCD (AB//CD) có:
AM=MD=12AD
BN=NC=12BC
⇒MN⇒MN là đường trung bình
⇒ \(\hept{\begin{cases}MN=(AB+CD)/2=3AB/2\\MN//AB//CD\end{cases}} \)
Xét △ABD có:
AM=MD=12AD
AP//AB
⇒AP=12AB (1)
Xét △ABC có:
BN=NC=12BC
NQ//AB
⇒NQ=12AB(2)
Ta lại có:
MP+PQ+QN=MN
⇔PQ=MN−MP−NQ
⇔PQ=3AB2−12AB−12AB
⇔PQ=12AB(3)
Từ (1)(2)(3)⇒MP=PQ=QN