Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Ta có A’C = a 13 , A’B = 3a, BC = 2a
Suy ra tam giác A’BC vuông tại B
Ta có
Đáp án B
Phương pháp giải:
Dựng hình, xác định khoảng cách giữa hai đường thẳng chéo nhau để tính chiều cao lăng trụ
Lời giải: Gọi M là trung điểm của BC.
Ta có
Kẻ => MH là đoạn vuông góc chung của BC, AA’
Mà
Xét tam giác vuông AA’G có :
Vậy thể tích cần tính là:
Đáp án A.
Dựng B ' M ⊥ A ' C ' ⇒ B ' M ⊥ A C C ' A '
Dựng M N ⊥ A C ' ⇒ A C ' ⊥ M N B '
Khi đó A B ' C ' ; A C ' A ' ^ = M N B ' ^ = 60 0
Ta có:
B ' M = a 2 2 ⇒ M N = B ' M tan M N B ' ^ = a 6 6
Mặt khác tan A C ' A ' ^ = M N C ' N = AA ' A ' C '
Trong đó:
M N = a 6 6 ; M C ' = a 2 2 ⇒ C ' N = C ' M 2 − M N 2 = a 3 3
Suy ra AA ' = a
Thể tích lăng trụ:
V = A B 2 2 . h = a 3 2 ⇒ V B ' . A C C ' A ' = V − V B ' . B A C = V − V 3 = 2 3 V = a 3 3 .
Gọi D là trung điểm của BC, H là chân đường cao kẻ từ A’ đến , và K là chân đường cao kẻ từ H đến AA’. Dễ thấy khoảng cách từ BC đến AA’ bằng với khoảng cách từ D đến AA’ và bằng 3/2d(H,AA’).
Đáp án D
Đáp án B