Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
I là trung điểm cạnh đáy BC. Do SA = SB = SC = SD nên SO ⊥ (ABCD)
Từ đó ta chứng minh được
Tính được
Suy ra
ABB'A' và CDD'C' là hình vuông \(\Rightarrow CD'\perp DC'\Rightarrow CD'\perp\left(ADC'B'\right)\)
Gọi M là giao điểm CD' và DC' \(\Rightarrow\) M là trung điểm 2 đoạn nói trên
Trong mp (ADC'B'), từ M kẻ \(MH\perp AC'\Rightarrow MH\) là đường vuông góc chung của AC' và CD'
\(DC'=AB'=\sqrt{AB^2+A'A^2}=a\sqrt{2}\)
\(\Rightarrow AD=B'C'=\sqrt{AC'^2-AB'^2}=a\sqrt{2}\)
\(\Rightarrow\Delta ADC'\) vuông cân tại D \(\Rightarrow\Delta MHC'\) vuông cân tại H
\(\Rightarrow MH=\dfrac{MC'}{\sqrt{2}}=\dfrac{DC'}{2\sqrt{2}}=\dfrac{a}{2}\)