K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

Gọi M, N, P lần lượt là trung điểm của EF, EG, HG

∆AEF vuông tại A có AM là trung tuyến nên AM = 1/2EF

∆HCG vuông tại C có CP là trung tuyến nên CP = 1/2GH

∆EFG có MN là đường trung bình nên MN = 1/2FG

∆EGH có NP là đường trung bình nên NP = 1/2EH

Chu vi tứ giác EFGH bằng EF + FG + GH + HE = 2(AM + MN + NP + PC) ≥ 2AC

Dấu "=" xảy ra khi A, M, N, P, C thẳng hàng theo thứ tự đó

<=> FG // AC // EH, EF // BD // HG <=> Tứ giác EFGH là hình bình hành

Cách xác định điểm: Lấy điểm F trên AB sao cho EF // BD, sau đó lần lượt lấy các điểm H, G trên CD, BC sao cho EH // AC // FG

15 tháng 8 2017

Vì ∆ ABC đồng dạng với ∆ AMN nên:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Diện tích hình chữ nhật MNPQ là:

SMNPQ = MN. NP = MN.KH = MN.( AH – AK)

=> SMNPQ = 16k.( 12- 12k)

Theo đề bài diện tích hình chữ nhật đó là 36cm2 nên

16k.( 12- 12k ) = 36

⇔ 16k.12( 1- k) = 36

⇔ 16k(1 – k) = 3 ( chia cả hai vế cho 12)

⇔ 16k – 16k2 = 3

⇔ 16k2- 16k + 3= 0

Ta có: ∆’= (-8)2 – 16.3 = 16> 0

Phương trình trên có 2 nghiệm là:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy để diện tích hình chữ nhật MNPQ là 36cm2 thì vị trí điểm M phải thỏa mãn:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

22 tháng 10 2019

Vì ∆ ABC đồng dạng với ∆ AMN nên:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Diện tích hình chữ nhật MNPQ là:

SMNPQ = MN. NP = MN.KH = MN.( AH – AK)

=> SMNPQ = 16k.( 12- 12k)

Theo đề bài diện tích hình chữ nhật đó là 36cm2 nên

16k.( 12- 12k ) = 36

⇔ 16k.12( 1- k) = 36

⇔ 16k(1 – k) = 3 ( chia cả hai vế cho 12)

⇔ 16k – 16k2 = 3

⇔ 16k2- 16k + 3= 0

Ta có: ∆’= (-8)2 – 16.3 = 16> 0

Phương trình trên có 2 nghiệm là:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy để diện tích hình chữ nhật MNPQ là 36cm2 thì vị trí điểm M phải thỏa mãn:

Giải bài 66 trang 64 SGK Toán 9 Tập 2 | Giải toán lớp 9

28 tháng 4 2019

Vì E thuộc cạnh AB nên EB < AB hay 2x < y

Ta có: AE = AB – EB = y – 2x (cm)

AG = AD + DG = y + (3/2) EB = y + (3/2) .2x = y + 3x (cm)

Diện tích hình chữ nhật bằng diện tích hình vuông nên ta có phương trình:

(y – 2x)(y + 3x) = y 2

Theo định lí Pitago, ta có: F C 2 = E B 2 + D G 2

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Chu vi ngũ giác ABCFG:

PABCFG = AB + BC + CF + FG + GA

= AB + BC + CF + FG + GD + DA

= y + y + x 13  + y – 2x + 3x + y = x(1 +  13 ) + 4y

Vì chu vi ngũ giác ABCFG bằng 100 + 4 13  (cm) nên ta có phương trình:

x(1 +  13  ) + 4y = 100 + 4 13

 

Ta có hệ phương trình:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giá trị của x và y thỏa điều kiện bài toán.

Vậy x = 4 (cm), y = 24 (cm).