Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xem cách vẽ ở hình 211. Ta vẽ được vô số hình bình hành ABEF như vậy
Trên cạnh CD ta lấy 1 điểm E bất kỳ (E khác C và D). Nối BE. Từ A kẻ đường thẳng song song với BE cắt đường thẳng CD tại F.
Tứ giác ABEF có các cạnh đối song song với nhau nên ABEF là hình bình hành
S A B E F = AD.EF = AD. AB ( AB = EF vì ABEF là hình bình hành)
Diện tích hình chữ nhật: S A B C D = AB.AD
⇒ S A B C D = S A B E F
Có thể vẽ được vô số hình như vậy.
Vẽ cung tròn tâm B bán kính 5cm cắt Đường thẳng CD tại hai điểm E và E’ (vì ta có BA > BC)
Nối BE, từ A kẻ đường thẳng song song với BE cắt đường thẳng CD tại F
Nối BE’, từ A kẻ đường thẳng song song với BE’ cắt đường thẳng CD tại F’
Ta có hình bình hành ABEF và hình bình hành ABE’F’ có cạnh AB = 5cm, BE = 5cm, BE’ = 5cm có diện tích bằng diện tích hình chữ nhật ABCD. Vẽ được hai hình.
a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2)
Hình chữ nhật có kích thước là 1cm x 12cm có diện tích là 12cm2 và chu vi là (1 + 12).2 = 26 (cm) (có 26 > 15)
Hình chữ nhật kích thước 2cm x 7cm có diện tích là 14cm2 và chu vi là (2 + 7).2 = 18 (cm)
(có 18 > 15).
Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.
b) + Chu vi hình chữ nhật ABCD đã cho là (5 + 3).2 = 16 cm
Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là: 16 : 4 = 4 cm
Diện tích hình vuông này là 4.4 = 16 cm2
(Ở trên hình là ví dụ hình vuông MNPQ có cạnh là 4cm)
Vậy SHCN < SHV
+ Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tích lớn nhất.
Gọi cạnh của hình chữ nhật có độ dài lần lượt là a, b.
Hình vuông có cùng chu vi với hình chữ nhật nên cạnh hình vuông là
⇒ Hình vuông có diện tích lớn nhất.
a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).
- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).
- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).
Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.
b) Chu vi hình chữ nhật ABCD đã cho là:
(5+3).2 = 16 (cm)
Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:
16:4 = 4(cm).
Diện tích hình vuông này là 4.4 = 16 (m2)
Vậy Shcn < Shv
Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.
Ta luôn có ≥ √ab
Suy ra ab ≤ .
Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .
Trên hình a= 5cm, b = 3cm, = 4cm
a - = 1cm, - b = 1cm
Do đó
SEBCG = b. ( a- ) = 3.1 = 3 (cm2).
SDGHI = . ( - b ) = 4.1 = 4 (cm2).
SAEGD = b. = 3.4 = 12 (cm2).
Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).
SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).
Vậy SABCD < SAEHI
Tổng quát:
Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.
Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .
Mà a - bằng - b và b < ( theo giả thiết a> b)
nên SEBCG < SDGHI
Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được
SEBCG + SAEGD < SDGHI + SAEGD
Vậy SABCD < SAEHI
Hướng dẫn giải:
a) Hình chữ nhật ABCD đã cho có diện tích là SACBD = 3.5 = 15 (cm2).
- Hình chữ nhật có kích thước 1cm x 12cm có diện tích là 12cm2 và chu vi là ( 1+12).2 = 26(cm) (có 26>15).
- Hình chữ nhật có kích thước 2cmx7cm co diện tích là 14cm2 và chu vi là (2+7).2 = 18(cm) (có 18 > 15).
Như vậy, vẽ được nhiều hình chữ nhật có diện tích bé hơn nhưng có chu vi lớn hơn hình chữ nhật ABCD cho trước.
b) Chu vi hình chữ nhật ABCD đã cho là:
(5+3).2 = 16 (cm)
Cạnh hình vuông có chu vi bằng chu vi hình chữ nhật ABCD là:
16:4 = 4(cm).
Diện tích hình vuông này là 4.4 = 16 (m2)
Vậy Shcn < Shv
Trong các hình chữ nhật có cùng chu vi thì hình vuông có diện tich lớn nhất.
Ta luôn có ≥ √ab
Suy ra ab ≤ .
Hình trên là hình vẽ chứng tỏ hình chữ nhật cạnh a,b (a>b) có diện tích nhỏ hơn diện tích hình vuông cạnh .
Trên hình a= 5cm, b = 3cm, = 4cm
a - = 1cm, - b = 1cm
Do đó
SEBCG = b. ( a- ) = 3.1 = 3 (cm2).
SDGHI = . ( - b ) = 4.1 = 4 (cm2).
SAEGD = b. = 3.4 = 12 (cm2).
Nên SABCD = SEBCG + SAEGD = 3 + 12 = 15(cm2).
SAEHI = SDGHI + SAEGD = 4 + 12 = 16 (cm2).
Vậy SABCD < SAEHI
Tổng quát:
Hình chữ nhật EBCG có một cạnh bằng a - , cạnh kia bằng b.
Hình chữ nhật DGHI có một cạnh bằng - b, cạnh kia bằng .
Mà a - bằng - b và b < ( theo giả thiết a> b)
nên SEBCG < SDGHI
Cộng thêm SAEGD vào mỗi vế bất đẳng thức ta được
SEBCG + SAEGD < SDGHI + SAEGD
Vậy SABCD < SAEHI
Hình chữ nhật ABCD và hình bình hành ABEF có đáy chung là AB và có chiều cao bằng nhau, vậy chúng có diện tích bằng nhau.
Suy ra cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước:
- Lấy một cạnh của hình bình hành ABEF làm một cạnh của hình chữ nhật cần vẽ, chẳng hạn cạnh AB.
- Vẽ đường thẳng EF.
- Từ A và B vẽ các đường thẳng vuông góc với đường thẳng EF chúng cắt đường thẳng EF lần lượt tại D, C. Vẽ các đoạn thẳng AD, BC.
ABCD là hình chữ nhật có cùng diện tích với hình bình hành ABEF đã cho.
Vẽ cung tròn tâm B bán kính 5cm cắt CD tại 2 điểm E và E'.
Nối BE, từ A kẻ đường thẳng song song với BE cắt CD tại F.
Nối BE', từ A kẻ đường thẳng song song với BE' cắt CD tại F'.
Ta có hình bình hành ABEF và hình bình hành ABE'F' có cạnh AB = 5cm, BE = 5cm, BE' = 5cm có diện tích bằng điện tích hình chữ nhật ABCD.
Có thể vẽ được hai hình như vậy.