K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

a) Ta có :

AD = BC = 6 cm

Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, ta có :

1/AD^2 + 1/AB^2 = 1/AH^2

<=> 1/6^2 + 1/8^2 = 1/AH^2

<=> AH = 4,8(cm)

b)

Áp dụng Pitago trong tam giác BCD vuông tại C có :

BC^2 + CD^2 = BD^2

<=> 6^2 + 8^2 = DB^2

<=> BD = 10(cm)

Xét hai tam giác vuông AHB và BCD có :

AH/BC = 4,8/6 = 4/5

AB/BD = 8/10 = 4/5

Do đó tam giác AHB đồng dạng với tam giác BCD

23 tháng 1 2022

giúp😥😥

 

a: DB=10cm

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}=\widehat{BDA}\)

Do đó: ΔADH\(\sim\)ΔBDA

c: Xét ΔBAD vuông tại A có AH là đường cao

nên \(AD^2=DH\cdot DB\)

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

\(\widehat{ABH}=\widehat{BDC}\)

Do đó: ΔAHB\(\sim\)ΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA

Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)

hay \(AD^2=HD\cdot BD\)

19 tháng 5 2022

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có

ABH^=BDC^

Do đó: ΔAHBΔBCD

b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có 

ADH^ chung

Do đó: ΔADHΔBDA

Suy ra: ADBD=HDDA

hay 

19 tháng 7 2019

Tham khảo lời giải tại link : https://h.vn/hoi-dap/question/249043.html

a: Xet ΔAHB vuông ạti H và ΔDAB vuông tại A có

góc DBA chung

=>ΔAHB đồng dạng với ΔDAB

b: ΔABD vuông tại A có AH vuông góc BD

nên AD^2=DH*BD=DH*AC

20 tháng 3 2023

k

 

13 tháng 4 2020

A B C D H

a/ Xét \(\Delta AHB\)\(\Delta BCD\), có:

\(\left\{{}\begin{matrix}\widehat{AHB}=\widehat{DCB}\left(=90^o\right)\\\widehat{ABD}=\widehat{BDC}\left(ABCDlahcn\right)\end{matrix}\right.\)\(\Rightarrow\Delta AHB\sim\Delta BCD\left(g.g\right)\) (ĐPCM)

b/ Xét \(\Delta AHD\)\(\Delta BAD\), có:

\(\left\{{}\begin{matrix}\widehat{AHD}=\widehat{BAD}\left(=90^o\right)\\\widehat{ADB}chung\end{matrix}\right.\)\(\Rightarrow\Delta AHD\sim\Delta BAD\left(g.g\right)\) (ĐPCM)

c/ Vì \(\Delta AHD\sim\Delta BAD\Rightarrow\frac{AD}{HD}=\frac{BD}{AD}\Leftrightarrow AD^2=DH.DB\) (ĐPCM)

d/ Áp dụng định lý Pitago, ta có: \(AC=\sqrt{8^2+6^2}=10\left(cm\right)\Rightarrow BD=10\left(cm\right)\)

Ta có: \(AD^2=DH.DB\left(cmt\right)\Leftrightarrow BC^2=DH.BD\)\(\Rightarrow DH=\frac{BC^2}{BD}=\frac{6^2}{10}=3,6\left(cm\right)\)

Áp dụng định lý Pitago, ta có: \(AH=\sqrt{AD^2-HD^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)

KL: ....................................

6 tháng 2 2022

a) và (b không nhìn rõ

a)Xét tam giác HBA và tam giác ABD có:

góc AHB=góc DAB(=90độ)

góc B chung

=> tam giác HBA đồng dạng tam giác ABD (g-g)

b) xét tam giác HDA và tam giác ADB có

góc AHD =góc DAB(=90độ)

góc D chung

=> tam giác HDA đồng dạng tam giác ADB (g-g)

=>AD/BD=HD/BD=>AD^2=DH.BD

c)vì ABCD là hcn=> BC=AD=6cm

tam giác ABD vuông tại A=> BD^2=AD^2+AB^2(ĐL Pytago)

=>BD^2=6^2+8^2

=>BD=10(cm)

Có AD^2=DH.BD=>6^2=DH.10=>DH=3.6(cm)

tam giác ADH vuông tại H

=>Ad^2=AH^2+HD^2(ĐL Pytago)

=>6^2=AH^2+3,6^2

=>AH=4.8(cm)