K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: AD=BC

mà BC=15cm

nên AD=15cm

Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:

\(BD^2=AB^2+AD^2\)

\(\Leftrightarrow BD^2=15^2+8^2=289\)

hay BD=17(cm)

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:

\(AH\cdot BD=AB\cdot AD\)

\(\Leftrightarrow AH=\dfrac{8\cdot15}{17}=\dfrac{120}{17}\left(cm\right)\)

14 tháng 5 2018

a, BD = 17cm

b, AH =  120 17 cm

c, HS tự làm

21 tháng 9 2021

như c

14 tháng 6 2021

A D B C 8 15 H I M N

a,Vì ABCD là hình chữ nhật => BC = AD = 15 cm 

Xét tam giác ABD vuông tại A, đường cao AH 

Áp dụng định lí Pytago cho tam giác ABD 

\(BD^2=AB^2+AD^2=64+225=289\Rightarrow BD=17\)cm 

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AD^2}\Rightarrow\frac{1}{AH^2}=\frac{1}{64}+\frac{1}{225}=\frac{225+64}{64.225}\)

\(\Leftrightarrow\frac{1}{AH^2}=\frac{289}{14400}\Leftrightarrow AH^2=\frac{14400}{289}\Leftrightarrow AH=\frac{120}{17}\)

14 tháng 6 2021

b, Xét tam giác AHB vuông tại H đường cao HI 

 \(AH^2=IA.AB\)( hệ thức lượng ) (1) 

Xét tam giác ABD vuông tại A đường cao AH 

\(AH^2=DH.BH\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra \(IA.AB=DH.BH\)( đpcm )

a: BD=17cm

b: \(AH=\dfrac{8\cdot15}{17}=\dfrac{120}{17}\left(cm\right)\)

5 tháng 8 2020

Hình bạn tự vẽ nhé <3

a/ Xét tam giác ABD vuông tại A

\(\Leftrightarrow BD^2=AB^2+AD^2\) (Định lí Py ta go)

\(\Leftrightarrow BD=\sqrt{AB^2+AD^2}=\sqrt{8^2+15^2}=17\)

Vậy....

b/ Xét tam giác ABD vuông tại A

Đường cao AH

\(\Leftrightarrow BD.AH=AB.AD\)

\(\Leftrightarrow AH=\frac{AB.AD}{BD}=\frac{8.15}{17}=\frac{120}{17}\)

Vậy....

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AH là đường cao ứng với cạnh huyền BD, ta được:

\(AH^2=HB\cdot HD\left(1\right)\)

Ta có: \(\widehat{HDN}=\widehat{HBA}\)

\(\widehat{HMB}=\widehat{HBA}\left(=90^0-\widehat{BAH}\right)\)

Do đó: \(\widehat{HDN}=\widehat{HMB}\)

Xét ΔHDN vuông tại H và ΔHMB vuông tại H có

\(\widehat{HDN}=\widehat{HMB}\)

Do đó: ΔHDN\(\sim\)ΔHMB

Suy ra: \(\dfrac{HD}{HM}=\dfrac{HN}{HB}\)

hay \(HD\cdot HB=HM\cdot HN\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra \(HA^2=HM\cdot HN\)