Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi I, E lần lượt là trung điểm của AB và CD
Vì S M S A = 1 2 ⇒ d M ; S C D = 1 2 d A ; S C A = 1 2 d I ; S C A
= 1 2 I H , trong đó H là hình chiếu của I lên SE
Ta có 1 I H 2 = 1 I S 2 + 1 I E 2 = 1 a 2 − a 2 2 + 1 a 2 = 7 3 a 2
⇒ I H = a 21 7 ⇒ d M ; S C D = 1 2 . a 21 7 = a 21 14
Đáp án B.
Gọi I là trung điểm của SP. Theo định lý Talet:
d 1 H M N = 1 2 d S H M N . Ta cần tính d S H M N .
Bước 1: Tìm V S . H M N
Ta có:
V S . H M N V S . H A D = 1 2 . 1 2 = 1 4 ; V S . H A D V S . A B C D = 1 4
Giả sử a = 1
Dễ thấy
V S . A B C D = 1 3 S H . S A B C D = 1 3 . 3 2 . 3 2 = 1 4
⇒
V
S
.
H
M
N
=
1
16
.
1
4
=
1
64
.
Bước 2: Tìm S H M N . Ta có: M H → = − 1 2 B S → và M N → = 1 2 B C → ⇒ H M N = 180 ° − S B C .
Do đó
sin H M N = sin S B C ⇒ S H M N = 1 2 M H . M N . sin H M N = 1 4 . S S B C .
Tam giác SBC có SB = BC = 1;
S C = S H 2 + H C 2 = 2 S H = 6 2 ⇒ S S B C = 15 8 .
Do đó S H M N = 1 4 . 15 8 = 15 32 .
Bước 3: Sử dụng công thức:
d S H M N = 3. V S . H M N S H M N = 3 64 . 32 15 = 15 10 ⇒ d I H M N = 1 2 . 15 10 = 15 20 .
Đáp án D
Gọi H,M lần lượt là trung điểm của AB và CD
Vì Δ S A B đều và mặt phẳng S A B ⊥ A B C D ⇒ S H ⊥ A B C D .
Ta có
C D ⊥ H M C D ⊥ S H ⇒ C D ⊥ S H M (1)
Gọi I là hình chiếu vuông góc của H lên mặt phẳng S C D (2)
Từ (1) và (2) suy ra H I ⊥ S C D
Vì A B // C D ⇒ A B // S C D ⇒ d A , S C D = d H , S C D = H I = 3 a 7 7
Giải sử A B = x x > 0 ⇒ S H = x 3 2 H M = x .
Mặt khác: 1 H I 2 = 1 H M 2 + 1 S H 2 ⇔ 7 9 a 2 = 1 x 2 + 4 3 x 2 ⇔ x 2 = 3 a 2 ⇒ x = 3 a
Thể tích: V S . A B C D = 1 3 S H . S A B C D = 1 3 . 3 a 2 .3 a 2 = 3 a 3 2 (đvtt)