Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là C
Kẻ đường thẳng Ax song song với IC, kẻ HE ⊥ Ax tại E.
Vì IC//(SAE) nên
Từ (1), (2) suy ra HK ⊥ (SAE).
=> Tam giác SAH vuông cân tại H nên
Ta có
( vì tứ giác AIHE là hình chữ nhật)
= a 77 22
Đáp án A.
Hướng dẫn giải:
Vì S H ⊥ ( A B C ) nên hình chiếu vuông góc của SA trên mặt đáy (ABC) là HA. Do đó
Tam giác ABC đều cạnh a nên A H = a 3 2 .
Tam giác vuông SHA
Diện tích tam giác đều ABC là S ∆ A B C = a 3 3 4 .
Vậy V S . A B C D = 1 3 S ∆ A B C . S H = a 3 3 8
Ta có : \(\widehat{SCH}\) là góc giữa SC và mặt phẳng (ABC).
\(\Rightarrow\widehat{SCH}=60^0\)
Gọi D là trung điểm cạnh AB. Ta có :
\(HD=\frac{a}{6}\), CD= \(\frac{a\sqrt{3}}{2}\)
\(HC=\sqrt{HD^2+CD^2}=\frac{a\sqrt{7}}{3}\)
\(SH=HC.\tan60^0=\frac{a\sqrt{21}}{3}\)
\(V_{s.ABC}=\frac{1}{3}.SH.S_{\Delta ABC}=\frac{1}{3}.\frac{a\sqrt{21}}{3}.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{7}}{12}\)
Kẻ Ax song song với BC, gọi N, K lần lượt là hình chiếu vuông góc của H lên Ax và SN. Ta có BC song song với mặt phẳng (SAN) và \(BA=\frac{3}{2}HA\)
Nên \(d\left(SA.BC\right)=d\left(B,\left(SAN\right)\right)=\frac{3}{2}d\left(H.\left(SAN\right)\right)\)
\(AH=\frac{2a}{3}\); \(HN=AH.\sin60^0=\frac{a\sqrt{3}}{3}\)
\(HK=\frac{SH.HN}{\sqrt{SH^2+HN^2}}=\frac{a\sqrt{42}}{12}\)
Vậy \(d\left(SA.BC\right)=\frac{a\sqrt{42}}{8}\)
Góc 60 là góc SCH. Dễ dàng tính được V
Trong (ABC), kẻ At // BC, Cz//AB, giao At=N
d(sa,bc)=d(bc, (SAN))=d(B, (SAN))=3/2 d(H, (SAN)).
Từ H kẻ HE vuông AN
Trong (SHE) kẻ HF vuông SE
=> d(H(SAN))=HF
Đáp án B