K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

Chọn C

Xác định được 

Khi đó ta tính được 

Trong mặt phẳng (ABC) lấy điểm D sao cho ABCD là hình chữ nhật => AB//(SCD) nên

Từ (1) và (2) suy ra 

Xét tam giác vuông SAD có

24 tháng 9 2018

ĐÁP ÁN: B

11 tháng 12 2018

NV
9 tháng 4 2021

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

Mà \(\left\{{}\begin{matrix}BC=\left(SBC\right)\cap\left(ABC\right)\\SB=\left(SAB\right)\cap\left(SBC\right)\\AB=\left(SAB\right)\cap\left(ABC\right)\end{matrix}\right.\) \(\Rightarrow\widehat{SBA}\) là góc giữa (SBC) và (ABC)

\(\Rightarrow\widehat{SBA}=60^0\Rightarrow SA=AB.tan60^0=a\sqrt{3}\)

\(SA\perp\left(ABC\right)\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABC)

\(tan\widehat{SCA}=\dfrac{SA}{AC}=\dfrac{\sqrt{3}}{2}\Rightarrow\widehat{SCA}\approx40^053'\)

Gọi M là trung điểm SB \(\Rightarrow GM=\dfrac{1}{3}AM\) (tính chất trọng tâm)

\(\Rightarrow d\left(G;\left(SBC\right)\right)=\dfrac{1}{3}d\left(A;\left(SBC\right)\right)\)

Từ A kẻ \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH=d\left(A;\left(SBC\right)\right)\)

\(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}=\dfrac{1}{3a^2}+\dfrac{1}{a^2}=\dfrac{4}{3a^2}\Rightarrow AH=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow d\left(G;\left(SBC\right)\right)=\dfrac{1}{3}AH=\dfrac{a\sqrt{3}}{6}\)

22 tháng 11 2018

ĐÁP ÁN: A

30 tháng 3 2017

23 tháng 10 2019

ĐÁP ÁN: B

12 tháng 2 2022

Bạn ơi, độ dài cạnh AC bằng a hay bằng 2a nhỉ? Với lại đề thiếu dữ kiện về độ dài SA. Mình cho là AC = a nghen, nếu khác thì bạn chỉ cần sửa số lại là được hen và điền lại độ dài cạnh SA nếu đề có nhé, mình sẽ làm một cách tổng quát nhất có thể.

Bạn vẽ hình giúp mình nha!

Kẻ \(AH\perp BC\left(H\in BC\right)\), xét \(\Delta ABC\) vuông tại A có AH là đường cao ứng với cạnh huyền: 

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{a^2}+\dfrac{1}{a^2}\Rightarrow AH=\dfrac{a\sqrt{2}}{2}\)

Ta có: \(\left\{{}\begin{matrix}SA\perp BC\left(SA\perp\left(ABC\right)\right)\\AH\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAH\right)\) \(\Rightarrow BC\perp SH\)

\(\Rightarrow\left(\stackrel\frown{\left(SBC\right),\left(ABC\right)}\right)=\left(\stackrel\frown{AH,SH}\right)=arctan\left(\dfrac{SA}{AH}\right)\)

27 tháng 9 2019