Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Gọi M là trung điểm BC
Gọi K là hình chiếu của A trên SM , suy ra AK ⊥ SM. (1)
+ Gọi H là trung điểm của BC
Do tam giác ABC cân tại A nên AH ⊥ BC, tam giác SBC đều nên SH ⊥ BC
Mà (SBC) ⊥ (ABC)
Do đó SH ⊥ (ABC)
+ Gọi K là hình chiếu vuông góc của H lên SA ⇒ HK ⊥ SA
Ta có B C ⊥ S H B C ⊥ A H ⇒ B C ⊥ S A H ⇒ B C ⊥ H K
Vậy HK là đoạn vuông góc chung của BC và SA, do đó khoảng cách giữa BC và SA là HK.
+ Tính HK
Tam giác SBC đều cạnh a ⇒ SH = a 3 2
Tam giác ABC vuông cân tại A ⇒ AH = B C 2 = a 2
Tam giác SHA vuông tại H có HK là đường cao ⇒ 1 H K 2 = 1 S H 2 + 1 A H 2
HK = a 3 4
Vậy d(SA; BC) = a 3 4 .
Đáp án C
Gọi K là trung điểm của SA
=>KM//SC
=>SC//(KMB)
d(SC;BM)=d(S;(KBM))=SK/SA*d(A;(KBM))=d(A;(KBM))
=>ΔABC đều
=>BM vuông góc AC
=>BM vuông góc (SAC)
Kẻ AQ vuông góc KM
=>AQ vuông góc (KMB)
=>d(A;(KMB))=AQ
\(SC=\sqrt{9a^2+4a^2}=a\sqrt{13}\)
KM=1/2SC=a*căn 3/2
=>\(AQ=\dfrac{3\sqrt{13}}{13}\)
=>d(BM;SC)=3*căn 13/13
Chọn D.
Gọi M là trung điểm của BC, suy ra AM ⊥ BC.
Ta có
Do đó
Tam giác ABC đều cạnh a, suy ra trung tuyến AM = a 3 2
Tam giác vuông SAM, có
Chọn C
Xác định được
Khi đó ta tính được
Trong mặt phẳng (ABC) lấy điểm D sao cho ABCD là hình chữ nhật => AB//(SCD) nên
Từ (1) và (2) suy ra
Xét tam giác vuông SAD có
Đáp án A
Gọi I,H lần lượt là hình chiếu vuông góc của A trên BC, SI, khi đó: d(A, (SBC)) =AH
Tam giác ABC đều cạnh a nên AI = a 3 2
Khi đó xét tam giác SAI :