K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

16 tháng 5 2017

13 tháng 5 2017

\(a,S_{xp}=4.\dfrac{a+2a}{2}.a=6a^2\)

\(b,\)Vẽ một mặt bên. Ta có:\(AH=\dfrac{AB-A^'B^'}{2}=\dfrac{2a-a}{2}=\dfrac{a}{2}\)

Trong tamn giác vuông A'HA:

\(AA^'=\sqrt{a^2+\left(\dfrac{a}{2}\right)^2}=\sqrt{\dfrac{5a^2}{4}}\)

Từ đó tính tiếp sẽ ra chiều cao hình chóp

Đáp số :Độ dài cạnh bên là :\(\sqrt{\dfrac{5a^2}{4}}\)

Chiều cao chóp cụt :\(\sqrt{\dfrac{3a^2}{4}}\)

7 tháng 6 2019

a) Ta có: AC2 = AB2 + BC2 (Pytago) = 32 + 32 = 18(cm)

Lại có: SH2 = SC2 - HC2 (Pytago)

b) Gọi K là trung điểm của BC

Ta có: SK2 = SH2 + HK2 (Pytago)

a:ΔSBC cân tại S có SM là trung tuyến

nên SM vuông góc BC

BC=6cm

=>BM=CM=3cm

SM=căn 5^2-3^2=4cm

Sxq=5*3/2*4=5*3*2=30cm2

Stp=30+5^2*căn 3/2=(60+25căn 3)/2cm2

b: BC vuông góc SM

BC vuông góc AM

=>BC vuông góc (SAM)

22 tháng 5 2021

gọi các cạnh đáy của hình chóp là ABC vì ΔABC đều => AB=AC=BC=4cm

kẻ đường thẳng đi qua A ⊥ BC tại M

=> AM là đường cao của tam giác => \(\widehat{AMB}=\)90o

=> AM là đường trung tuyến ( tc Δ đều)

=> BM=CM=BC/2=4/2=2cm

xét ΔAMB có \(\widehat{AMB}=\)90o

=> AM2+BM2=AB2 (đl pitago)

=>AM2+22=42

=> AM=\(2\sqrt{3}\)

=> V của hình chóp = \(\dfrac{2\sqrt{3}.4}{2}.6.\dfrac{1}{3}\)=\(8\sqrt{3}\)cm3 => Đáp án B