Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm hình vuông ABCD,M là trung điểm của SA
Mặt phẳng trung trực của đoạn thẳng SA cắt SO tại I
Điểm I là tâm của mặt cầu ngoại tiếp hình chóp S.ABCD bán kính R=IS
Đáp án C
Phương pháp
Hình chóp có cạnh bên vuông góc với đáy, sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp
Hình chóp có cạnh bên vuông góc với đáy, sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp
Đáp án A.
Trong mặt phẳng (ABCD), gọi O = A C ∩ B D , H là trung điểm AD.
Gọi I,J lần lượt là trung điểm của BC và G là trọng tâm Δ S A D .
Đường thẳng d qua O và vuông góc với (ABCD) gọi là trục của đường tròn ngoại tiếp đáy (ABCD).
∆ qua G và vuông góc với (SAD) là trục của đường tròn ngoại tiếp (SAD).
Trong mặt phẳng (SHI), gọi I = ∆ ∩ d
⇒ J cách đều các đỉnh của hình chóp
⇒ J là tâm mặt cầu ngoại tiếp S.ABCD có bán kính
R = J D = O J 2 + O D 2 = G H 2 + O D 2
Có G H = 1 3 S H = 1 3 . a . 3 2 = a 3 6 ;
O D = 1 2 D B = a 5 2 ⇒ R = 3 a 2 56 + 5 a 2 4 = 4 3 a ⇒ S m c = 4 πR 2 = 16 3 a 2
Đáp án D
Ta có R = S A 2 4 + R d 2 = a 2 + a 2 2 2 = a 3 2 ⇒ S = 4 π R 2 = 6 π a 2