Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
{AD // BCAD = BC AB = CDAB // CD
Vì AD // BC
⇒ AD // BE
Vì {AD = BCBE= BC
⇒ AD = BE
Tứ giác EADB có
{AD // BEAD = BE
⇒ Tứ giác EADB là hình bình hành (đpcm)
b, Vì tứ giác EADB là hình bình hành
⇒ AE // BD (1)
Vì {AB = CDDF = CD
⇒ AB = DF
Vì AB // CD
⇒ AB // DF
Tứ giác ABDF có
{AB = DFAB // DF
⇒ Tứ giác ABDF là hình bình hành
⇒ AF // BD (2)
Từ (1), (2) ⇒ E, A và F thẳng hàng (đpcm)
c, Vì tứ giác EADB là hình bình hành
⇒ AE = BD (3)
Vì tứ giác ABDF là hình bình hành
⇒ AF = BD (4)
Từ (3), (4) ⇒ AE = AF
Vì {AE = AFE, A, F thẳng hàng
⇒ A là trung điểm của EF
⇒ CA là đường trung tuyến của ΔCEF
Vì DC = DF
⇒ D là trung điểm của EF
⇒ ED là đường trung tuyến của ΔCEF
Vì BE = BC
⇒ B là trung điểm của EC
⇒ FB là đường trung tuyến của ΔCEF
Như vậy
{CA là đường trung tuyến của ΔCEF ED là đường trung tuyến của ΔCEFFB là đường trung tuyến của ΔCEF
a: Xét tứ giác ABEC có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo AE
Do đó: ABEC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABEC là hình chữ nhật
xét tg BCDE có: A là t/đ của BD(vì AB=AD) và A là t/đ của EC(vì AC=AE)
=> tg BCDE là hbh(DH)
a: Xét tứ giác ADBE có
AD//BE
AD=BE
Do đó: ADBE là hình bình hành