K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

Đáp án D

Trên Bx lấy điểm B’ sao cho BB’ = 4

Trên Dz lấy điểm D’ sao cho DD’ = 2

Gọi  α  là mặt phẳng chứa tia Bx và Dz

Xét (AB’D’) và  α có:

B’ là điểm chung

AD’ //  α

⇒ giao tuyến của α và (AB’D’) là đường thẳng d đi qua B’ và song song với AD’

Trong mặt phẳng α , ta có: d cắt Cz tại C’

 Gọi  O = A C ∩ B D , O ' = A C ' ∩ B ' D '

Xét hình thang BB’D’D có: OO’ là đường trung bình

Xét tam giác ACC’ có: OO’ là đường trung bình

14 tháng 11 2018

Đáp án C

21 tháng 4 2017

Đáp án D

Trên Bx và Dz lấy điểm B′ và D′ sao cho BB’ = 2, DD’ =4

Gọi O là tâm hình bình hành ABCD, I là trung điểm của B′D′

Ta có  BDD′B′ là hình thang, OI là đường trung bình của hình thang nên

OI // BB′ // DD′ // Cy

OI = B B '   +   D D ' 2 = 2 + 4 2 = 3

 Xét mặt phẳng tạo bởi OI và CC′ có: AI ∩ Cy = C′

Ta có OI // CC′, AO = OC suy ra AI = IC′

Suy ra OI là đường trung bình của tam giác ACC′ CC′ = 2OI = 6

Đáp án cần chọn là: D

8 tháng 6 2017

Đáp án C

Trên Ax lấy điểm A’ sao cho AA’= x

Trên By lấy điểm B’ sao cho BB’ = y

Trên Cz lấy điểm C’ sao cho CC’ = z

Gọi  α  là mặt phẳng chứa tia Cz và Dt

Xét (A’B’C’) và  α  có:

C’ là điểm chung

A’B’ //  α

⇒ giao tuyến của α  và (A’B’D’) là đường thẳng d đi qua C’ và song song với A’B’

Trong mặt phẳng α , ta có: d cắt Dt tại D’

 Gọi  O = A C ∩ B D , O ' = A C ' ∩ B ' D '

Xét hình thang AA’C’C có: OO’ là đường trung bình

  ⇒ O O ' = A A ' + C C ' 2 = x + z 2

Xét tam giác BDD’D có: OO’ là đường trung bình

⇒ O O ' = D D ' + B B ' 2 ⇒ DD’ = x + z – y

10 tháng 6 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) Do ABCD là hình bình hành, nên AB // DC

=> AB // (Cz, Dt) (1)

Theo giả thiết Ax // Dt nên Ax // (Cz, Dt) (2)

Từ (1) và (2) suy ra: (Ax, By) // (Cz, Dt)

b) Mặt phẳng β cắt 2 mặt phẳng song song ( Ax, By), (Cz, Dt) theo hai giao tuyến là A’B’và C’D’ nên A’B’// C’D’. (3)

Chứng minh tương tự (Ax, Dt) song song với (By,Cz).Và mặt phẳng β cắt 2 mặt phẳng song song (Ax, Dt), (By, Cz) theo hai giao tuyến là A’D’và B’C’ nên A’D’// B’C’ (4)

Từ (3) và (4) suy ra: tứ giác A’B’C’D’ là hình bình hành.

=> J là trung điểm của A’C’ ( tính chất hình bình hành).

Tứ giác AA’C’C là hình thang vì có: AA’ // CC’ ( giả thiết). Lại có, I và J lần lượt là trung điểm của AC và A’C’ nên IJ là đường trung bình của hình thang

=> IJ// AA’// CC’ ( đpcm).

c) Vì IJ là đường trung bình của hình thang ACC’A’ nên IJ = 1/2(AA’ + CC’)

IJ cũng là đường trung bình của hình thang BDD’B’: IJ = 1/2(BB’ + DD’)

Từ đây suy ra: DD’ + BB’ = AA’ + CC’

=> DD’ = AA’ + CC’ – BB’ = a + c – b

1 tháng 5 2019

Đáp án B

Giả sử mặt phẳng ban đầu là (A’B’C’). Ta cần xác định điểm D sao cho

Xét (A’B’C’) và (C’CD) có:

C’ là điểm chung

A’B’//(C’CD) (do (A’B’BA) // (C’CD))

⇒ giao tuyến của (A’B’C’) và (C’CD) là đường thẳng m đi qua điểm C’ và song song với A’B’

⇒ m cắt d tại D’ là điểm cần tìm

Xét hình A’B’C’D’ có A’B’ // C’D’  

⇒ A’B’ = C’D’ ( a, b, c, d là các đường thẳng song song lần lượt đi qua A, B, C, D là các đỉnh của hình bình hành)

⇒ A’B’C’D’ là hình bình hành

6 tháng 6 2017

A B C D A' B' C' D' I J
a) Có AA' // DD' và AB//DC nên \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\).
b) Do \(\left(Ax,By\right)\) // \(\left(C_z,D_t\right)\)\(\left(\beta\right)\cap\left(AA'B'B\right)=A'B'\)\(\left(\beta\right)\cap\left(CC'D'D\right)=C'D'\) nên \(A'B'\) // \(C'D'\).
Chứng minh tương tự B'C'//D'A'.
Do đó tứ giác A'B'C'D' là hình bình hành và J là trung điểm của A'C'.
Suy ra: IJ là đường trung bình của hình thang A'C'CA nên IJ // AA'.
c) Tương tự IJ là đường trung bình của hình thang B'D'DB \(IJ=\dfrac{\left(B'B+DD'\right)}{2}\).
Theo câu b IJ là đường trung bình của hình thang A'C'CA nên \(IJ=\dfrac{\left(AA'+CC'\right)}{2}\).
Suy ra: \(BB'+DD'=AA'+CC'\) hay \(DD'=a+c-b\).