Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) AM//CD. Theo định lí Ta-let, ta có: \(\frac{IM}{ID}=\frac{AI}{IC}\)( 1 )
AD//CN. Theo định lí Ta-let, ta có : \(\frac{IA}{IC}=\frac{ID}{IM}\) ( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(\frac{IM}{ID}=\frac{ID}{IN}\Rightarrow ID^2=IM.IN\)
b) Ta có : \(\frac{DM}{MN}=\frac{AM}{MB}\Rightarrow\frac{DM}{DM+MN}=\frac{AM}{AM+MB}\)
do đó : \(\frac{DM}{DN}=\frac{AM}{AB}\)( 3 )
Mà ID = IK ; ID2 = IM.IN
\(\Rightarrow IK^2=IM.IN\)\(\Rightarrow\frac{IK}{IM}=\frac{IN}{IK}\Rightarrow\frac{IK-IM}{IM}=\frac{IN-IK}{IK}\)
Do đó : \(\frac{MK}{IM}=\frac{KN}{IK}\Rightarrow\frac{KM}{KN}=\frac{IM}{IK}=\frac{IM}{ID}=\frac{AM}{CD}=\frac{AM}{AB}\)( 4 )
Từ ( 3 ) và ( 4 ) suy ra \(\frac{DM}{DN}=\frac{KM}{KN}\)
c) \(\Delta AGB~\Delta AEC\left(g.g\right)\)\(\Rightarrow\frac{AB}{AG}=\frac{AC}{AE}\Rightarrow AB.AE=AC.AG=AG\left(AG+GC\right)\)( 5 )
\(\Delta BGC~\Delta CFA\left(g.g\right)\)\(\Rightarrow\frac{AF}{GC}=\frac{AC}{BC}=\frac{AC}{AD}\)
\(\Rightarrow AF.AD=AC.GC=GC\cdot\left(AG+GC\right)\)( 6 )
Cộng ( 5 ) và ( 6 ) theo vế, ta được :
\(AB.AE+AF.AD=AG\left(GC+AG\right)+GC\left(AG+GC\right)=\left(AG+GC\right)^2=AC^2\)
a/ Xét \(\Delta IMC\)có : MC // AD nên : \(\frac{IM}{ID}=\frac{IC}{IA}\)( hệ quả định lí Ta-let )
Xét \(\Delta IDC\)có : DC // AN nên : \(\frac{ID}{IN}=\frac{IC}{IA}\)( hệ quả định lí Ta-let )
Do đó : \(\frac{IM}{ID}=\frac{ID}{IN}\left(=\frac{IC}{IA}\right)\)
Vậy : \(IM.IN=ID^2\)
b/ Ta có : \(\frac{DM}{DN}=\frac{DM}{DM+MN}\)
\(=\frac{AD}{AD+NB}=\frac{AD}{CN}\)
\(=\frac{ID}{IN}=\frac{2.ID}{2.IN}\)
\(=\frac{KD}{KD+2.NK}\)
\(\Leftrightarrow\frac{DM}{DN}=\frac{KD}{DN+NK}\)
\(=\frac{KD-DM}{DN+NK-DN}=\frac{KM}{KN}\left(đpcm\right)\)
c) Xét \(\Delta ABG\)và\(\Delta ACE\)có :
\(\widehat{AGB}=\widehat{AEC}\left(=90^0\right)\)
\(\widehat{A}:chung\)
=> tam giác AGB = tam giác ACE ( cgv-gn )
\(\Rightarrow\frac{AB}{AG}=\frac{AC}{AE}\)
\(\Rightarrow AB.AE=AC.AG\)
CM tương tự,ta có : \(\Delta BCG\)đồng dạng với \(\Delta ACF\)
\(\Rightarrow\frac{BC}{GC}=\frac{AC}{AF}\)
\(\Rightarrow AC.AF=AC.GC\)
\(\Rightarrow AD.AF=AC.AG\)( vì AD = BC )
Do đó : \(AB.AE+AD.AF=AC.AG+AC.GC\)
\(\Rightarrow AB.AE+AD.AF=AC.\left(AG+GC\right)\)
\(\Rightarrow AB.AE+AD.AF=AC.AC\)
Vậy AB.AE + AD.À = AC2
a)Hình như đề sai. phải là: \(\frac{KM}{KN}=\frac{DN}{DM}\Leftrightarrow\frac{KM}{KM+MN}=\frac{DN}{DN+NM}\Leftrightarrow\)đến đây để c/m đc thì phải c/m KM=DN
hình nè:
b) dễ dàng c/m tam giác AGB đồng dạng tam giác AEC
=> \(\frac{AG}{AE}=\frac{AB}{AC}\Rightarrow AE.AB=AG.AC\)
đề câu này cũng sai. phải là: AB.AE=AD.AF hay là một tỉ số nào đó
theo chị em phải c/m tỉ số thứ 2 đó = CG.AC
=> cộng vào sẽ được AC(AG+CG)=AC ^2
đến đây chị chỉ giúp được vậy thôi. bài khó quá
a) Ta có: Tứ giác ABCD là hình bình hành => ^ABC = ^ADC => 1800 - ^ABC = 1800 -^ADC
=> ^CBH = ^CDK.
Xét \(\Delta\)CHB và \(\Delta\)CKD: ^CHB=^CKD (=900); ^CBH=^CDK => \(\Delta\)CHB ~ \(\Delta\)CKD (g.g)
=> \(\frac{CH}{CK}=\frac{CB}{CD}\Rightarrow\frac{CH}{CB}=\frac{CK}{CD}\)(đpcm).
b) Ta có: \(\frac{CH}{CB}=\frac{CK}{CD}\)(câu a) nên \(\frac{CH}{CB}=\frac{CK}{AB}\)(Do CD=AB) hay \(\frac{CB}{CH}=\frac{AB}{CK}\)
Thấy: ^ABC là góc ngoài \(\Delta\)CHB => ^ABC = ^CHB + ^HCB = 900 + ^HCB (1)
BC // AD; CK vuông góc AD tại K => CK vuông góc BC (Quan hệ song song vuông góc)
=> ^BCK=900 => ^KCH = ^HCB + ^BCK = ^HCB + 900 (2)
Từ (1) và (2) => ^ABC = ^KCH
Xét \(\Delta\)ABC và \(\Delta\)KCH: ^ABC = ^KCH; \(\frac{CB}{CH}=\frac{AB}{CK}\)=> \(\Delta\)ABC ~ \(\Delta\)KCH (c.g.c) (đpcm).
c) Gọi P là hình chiếu vuông góc của D lên đường chéo AC.
Xét \(\Delta\)APD và \(\Delta\)AKC: ^APD = ^AKC (=900); ^A1 chung => \(\Delta\)APD ~ \(\Delta\)AKC (g.g)
=> \(\frac{AP}{AK}=\frac{AD}{AC}\Rightarrow AD.AK=AP.AC\)(3)
Xét \(\Delta\)DPC và \(\Delta\)CHA: ^DPC = ^CHA (=900); ^DCP=^A2 (Do AB//CD)
=> \(\Delta\)DPC ~ \(\Delta\)CHA (g.g) => \(\frac{CD}{AC}=\frac{CP}{AH}\Rightarrow CD.AH=CP.AC\)
Mà CD=AB nên \(AB.AH=CP.AC\)(4)
Cộng (3) với (4) theo vế: \(AB.AH+AD.AK=CP.AC+AP.AC=AC.\left(CP+AP\right)\)
\(\Rightarrow AB.AH+AD.AK=AC.AC=AC^2\)(đpcm).
d) Áp dụng hệ quả ĐL Thales ta được: \(\frac{ID}{IM}=\frac{IC}{IA}\)(AM//CD)
Lại có: \(\frac{IC}{IA}=\frac{IN}{ID}\)(CN//AD). Suy ra: \(\frac{ID}{IM}=\frac{IN}{ID}\Rightarrow IM.IN=ID^2\)(đpcm).
e) Ta có: \(\frac{ID}{IM}=\frac{IN}{ID}\)(cmt). Mà ID=IJ.
=> \(\frac{IJ}{IM}=\frac{IN}{IJ}\Rightarrow\frac{IM}{IJ}=\frac{IJ}{IN}=\frac{IM-IJ}{IJ-IN}=\frac{JM}{JN}\)(T/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{ID}{IN}=\frac{JM}{JN}\). Lại có: \(\frac{ID}{IN}=\frac{AD}{CN}=\frac{BC}{CN}=\frac{DM}{DN}\)(Hệ quả ĐL Thales)
Từ đó suy ra: \(\frac{JM}{JN}=\frac{DM}{DN}\)(đpcm).
a: Xét tứ giác ADEC có
Ilà trung điểm chung của AE và DC
nên ADEC là hình bình hành
b: Xét tứ giác AMDN có
góc AMD=góc AND=góc MAN=90 độ
AD là phân giác của góc MAN
Do đó: AMDN là hình vuông
c: DE//AC
DM//AC
Do đó: D,M,E thẳng hàng