Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : MN\(\perp\)EC
AB\(\perp\)EC
=> AB // MN
Vì ABCD là hình bình hành
=> AD = BC
=> AB // CD
=> AB // CD // MN
Xét tứ giác AECD có :
M là trung điểm AD
MF // AE
=> F là trung điểm EC
Xét \(\Delta CEB\)có :
F là trung điểm EC
FN// EB
=> N là trung điểm BC
Ta có : AM = MD = \(\frac{AD}{2}\)
BN = NC = \(\frac{BC}{2}\)
=> MD = NC
Xét tứ giác MNCD có :
MN // DC
MD = NC
=>MNCD là hình bình hành
Vì F là trung điểm EC
=> EF = FC
Xét \(\Delta MEC\)có :
MF \(\perp\)EC
EF = FC
=> \(\Delta MEC\)cân tại M
a: Xét hình thang ADCB có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của CB
Xét tứ giác MNCD có
MD//CN
MD=CN
Do đó: MNCD là hình bình hành
mà DM=DC
nên MNCD là hình thoi
a, Ta có : CE vuông góc với AB
Mà CE đi qua MN và vuông góc với MN
=> AB//MN
Mà : AB//DC
=>MN//DC
Xét tứ giác MNCD có :
MN//DC (cmt)
MD//NC
=> MNCD là hình bình hành (có các cạnh đối bằng nhau)
b,Xét tam giác EBC có :
BN=NC ( MN//DC và AM=MD => MN là đtb của tứ giác ABCD => BN=NC)
Xin lỗi cho mình làm tiếp theo nha bạn .
Và : FN//EB (MN//AB)
=> FN là đtb của tam giác EBC
=> EF=FC
* Ta lại xét tam giác MEF và tam giác MFC có :
MF cạnh chung
F=90
EF=FC (cmt)
=> tg MEF=tg MFC (cgc)
=> ME=MC
=> tam giác MEC là tam giác cân
c, mk không biết
nhớ k nhé
a) Ta có :
MN⊥CE (gt)
AB⊥CE (gt)
⇒ MN//AB
Mà AB//CD ( vì ABCD là hbh )
⇒ MN//CD
Xét tg MNCD có :
MN//CD (cmt )
MD//NC ( vì AD//BC )
⇒ tg MNCD là hbh
b) Gọi F là giao đ' của MN và EC
Xét hình thang AECD (vì AE//CD ) có :
MF//AE//CD
Mà M là trung đ' AD (gt):
⇒ F là trung đ' EC
⇒ EF=CF
Xét Δ EMC có :
MF là đg trung tuyến ( EF=CF ) đồng thời là đg cao ( vì MF⊥EC ) của ΔEMC
⇒ ΔEMC là Δ cân tại M
đừng quên tick cho t nhoa ❤