K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2021

Để hàm số đã cho đồng biến thì \(m^2-5m-6>0\)\(\Leftrightarrow m^2+m-6m-6>0\)\(\Leftrightarrow m\left(m+1\right)-6\left(m+1\right)>0\)\(\Leftrightarrow\left(m+1\right)\left(m-6\right)>0\)

Trường hợp 1: \(\hept{\begin{cases}m+1>0\\m-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m>6\end{cases}}\Rightarrow m>6\)

Trường hợp 2: \(\hept{\begin{cases}m+1< 0\\m-6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m< 6\end{cases}}\Rightarrow m< -1\)

Vậy để hàm số đã cho đồng biến thì \(m>6\)hoặc \(m< -1\)

Để hàm số đã cho nghịch biến thì \(m^2-5m-6< 0\)\(\Leftrightarrow\left(m+1\right)\left(m-6\right)< 0\)

Trường hợp 1: \(\hept{\begin{cases}m+1< 0\\m-6>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m>6\end{cases}}\)(loại vì m không thể vừa nhỏ hơn -1 lại vừa lớn hơn 6)

Trường hợp 2: \(\hept{\begin{cases}m+1>0\\m-6< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m< 6\end{cases}}\Rightarrow-1< m< 6\)

Vậy để hàm số đã cho nghịch biến thì \(-1< m< 6\)

18 tháng 8 2016

đồng biến thì m+2>0

nghịch biến thì m+2<0

4 tháng 5 2016

a) khi x>0

để đồng biến thì m+2>=0=>m>=-2

b)khi x<0

để nghịch biến thì m+2<0=>m<-2

tự trình bày nha

4 tháng 5 2016

đề là x>0 mà

Câu 1: 

a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)

\(\Leftrightarrow3m< -5\)

hay \(m< -\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)

b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì

3m+5>0

\(\Leftrightarrow3m>-5\)

hay \(m>-\dfrac{5}{3}\)

Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)

NV
23 tháng 2 2021

2.

Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)

\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)

\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)

Để hàm đồng biến khi x>0

\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)

\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)

a) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì 

\(\sqrt{2n+5}-2>0\)

\(\Leftrightarrow\sqrt{2n+5}>2\)

\(\Leftrightarrow2n+5>4\)

\(\Leftrightarrow2n>-1\)

\(\Leftrightarrow n>-\dfrac{1}{2}\)

Kết hợp ĐKXĐ, ta được: \(n>-\dfrac{1}{2}\)

Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) nghịch biến với mọi x<0 thì \(n>-\dfrac{1}{2}\)

b) Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(\sqrt{2n+5}-2< 0\)

\(\Leftrightarrow\sqrt{2n+5}< 2\)

\(\Leftrightarrow2n+5< 4\)

\(\Leftrightarrow2n< -1\)

\(\Leftrightarrow n< -\dfrac{1}{2}\)

Kết hợp ĐKXĐ, ta được: \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)

Vậy: Để hàm số \(y=\left(\sqrt{2n+5}-2\right)x^2\) đồng biến với mọi x<0 thì \(-\dfrac{5}{2}\le n< \dfrac{1}{2}\)

24 tháng 2 2021

a,Nghịch biến khi `x<0`

`<=>\sqrt{2n+5}-2>0(x>=-5/2)`

`<=>\sqrt{2n+5}>2`

`<=>2n+5>4`

`<=>2n> -1`

`<=>n> -1/2`

Kết hợp ĐKXĐ:

`=>n>1/2`

b,Đồng biến với mọi `x<0`

`<=>\sqrt{2n+5}-2<0`

`<=>\sqrt{2n+5}<2`

`<=>2n+5<4`

`<=>2n< -1`

`<=>n< -1/2`

Kết hợp ĐKXĐ:

`=>-5/2<x< -1/2`

4 tháng 12 2021

a) Để đồ thị hàm số \(y=\left(m-2\right)x+2\) đồng biến trên R.

=> \(m-2>0.\)

<=> \(m>2.\)

b) Đồ thị hàm số \(y=\left(m-2\right)x+2\) song song với đường thẳng \(y=5x+1.\)

=> \(m-2=5.\)

<=> \(m=7.\)

4 tháng 12 2021

Câu 2

a) Để hs đã cho đồng biến trên R thì:

\(m-2>0\\ < =>m>2\)

b) Đề đths đã cho song song với đường thẳng \(y=5x+1\) thì:

\(m-2=5\\ < =>m=7\)

16 tháng 5 2021

H/S đồng biến `x<0`

`<=>2-m>0`

`<=>m>2`

16 tháng 5 2021

m<2