Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp:
Số nghiệm của phương trình f(x) = m bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m
Cách giải:
Số nghiệm của phương trình f(x) = m(*) bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m
⇒ Để (*) có 3 nghiệm thực phân biệt thì m ∈ (-1;3)
Đáp án D
Ta có . Số nghiệm của phương trình chính là số giao điểm của đồ thị hàm số H và đường thẳng .
Dựa vào bảng biến thiên ta thấy có ba nghiệm phân biệt khi:
.
Chọn B.
Đặt
Khi đó, phương trình f( 4 x - x 2 ) = log 2 m trở thành
Để phương trình f( 4 x - x 2 ) = log 2 m có 4 nghiệm thực phân biệt thì đường thẳng y = log 2 m cắt đồ thị hàm số y = f(t) tại hai điểm phân biệt thỏa mãn t < 4.
Suy ra
Vậy m ∈ ( 1 2 ;8).
Đáp án C