K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2018

Đáp án C

4 tháng 5 2019

Đáp án C

4 tháng 4 2017

Đáp án C

Phương pháp:

Số nghiệm của phương trình f(x) = m bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

Cách giải:

Số nghiệm của phương trình f(x) = m(*) bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m

⇒ Để (*) có 3 nghiệm thực phân biệt thì m ∈ (-1;3)

25 tháng 9 2019

Đáp án A

21 tháng 5 2019

Đáp án D

Ta có . Số nghiệm của phương trình chính là số giao điểm của đồ thị hàm số H và đường thẳng .

Dựa vào bảng biến thiên ta thấy có ba nghiệm phân biệt khi:

  .

6 tháng 5 2017

Đáp án B

30 tháng 12 2018

Chọn B.

Đặt 

Khi đó, phương trình f( 4 x - x 2 ) =  log 2   m trở thành 

Để phương trình f( 4 x - x 2 ) =  log 2   m  có 4 nghiệm thực phân biệt thì đường thẳng y =  log 2   m  cắt đồ thị hàm số y = f(t) tại hai điểm phân biệt thỏa mãn t < 4.

Suy ra 

Vậy  ( 1 2 ;8).

21 tháng 7 2018

22 tháng 8 2017

Chọn A.

Dựa vào bảng biến thiên ta có m >  27 4