Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)
mà 3^6/9-81=0 => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0
\(f\left(\frac{1}{3}\right)+2f\left(\frac{1}{\frac{1}{3}}\right)=\left(\frac{1}{3}\right)^2\Rightarrow f\left(\frac{1}{3}\right)+2f\left(3\right)=\frac{1}{9}\)(1)
\(f\left(3\right)+2f\left(\frac{1}{3}\right)=3^2\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)=18\)(2)
Từ (1) và (2) \(\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)-f\left(\frac{1}{3}\right)-2f\left(3\right)=18-\frac{1}{9}\)
\(\Rightarrow3f\left(\frac{1}{3}\right)=\frac{161}{9}\Rightarrow f\left(\frac{1}{3}\right)=\frac{161}{27}\)
vậy f(1/2)+3.f(2)=1/4 hay 3f(1/2)+9.f(2)=3/4
và f(2)+3.f(1/2)=4
trừ vế theo vế ta đc
8.f(2)=-13/4
suy ra f(2)=-13/32
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
mình ko biết xin lỗi bạn nha!
Xét hàm số f(x) thỏa mãn f(x)+2f(1/x)=x^2. với mọi x thuộc R.
Đúng với x = 2 . => f(2) + 2f(1/2) = 2^2 = 4
=> f(2) + 2f(1/2) = 4 ( 1 )
Đúng với x = 1/2 => f(1/2) + 2f(2) = (1/2)^2 = 1/4.
=> 2f(2) + f (1/2) = 1/4.=> 4f(2) + 2f(1/2) = 2/4 ( 2 )
Lấy (2) trừ (1) ta đc : 3f(2) = 2/4 - 4 = -7/2
=> f(2) = -7/2: 3= -7/6
\(\text{1)}\)
\(\text{Thay }x=-2,\text{ ta có: }f\left(-2\right)-5f\left(-2\right)=\left(-2\right)^2\Rightarrow f\left(-2\right)=-1\)
\(\Rightarrow f\left(x\right)=x^2+5f\left(-2\right)=x^2-5\)
\(f\left(3\right)=3^2-5\)
\(\text{2)}\)
\(\text{Thay }x=1,\text{ ta có: }f\left(1\right)+f\left(1\right)+f\left(1\right)=6\Rightarrow f\left(1\right)=2\)
\(\text{Thay }x=-1,\text{ ta có: }f\left(-1\right)+f\left(-1\right)+2=6\Rightarrow f\left(-1\right)=2\)
\(\text{3)}\)
\(\text{Thay }x=2,\text{ ta có: }f\left(2\right)+3f\left(\frac{1}{2}\right)=2^2\text{ (1)}\)
\(\text{Thay }x=\frac{1}{2},\text{ ta có: }f\left(\frac{1}{2}\right)+3f\left(2\right)=\left(\frac{1}{2}\right)^2\text{ (2)}\)
\(\text{(1) - 3}\times\text{(2) }\Rightarrow f\left(2\right)+3f\left(\frac{1}{2}\right)-3f\left(\frac{1}{2}\right)-9f\left(2\right)=4-\frac{1}{4}\)
\(\Rightarrow-8f\left(2\right)=\frac{15}{4}\Rightarrow f\left(2\right)=-\frac{15}{32}\)
\(f\left(0.2015\right)=f\left(0+2015\right)=f\left(2015\right)\)=> \(f\left(2015\right)=f\left(0\right)\)
Ta có: \(f\left(0\right)=f\left(0.\frac{-1}{2}\right)=f\left(0+\frac{-1}{2}\right)=f\left(-\frac{1}{2}\right)=-\frac{1}{2}\)
Vậy \(f\left(2015\right)=-\frac{1}{2}\)
\(\text{Giải :}\)
\(f\left(0.2015\right)=f\left(0+2015\right)=f\left(2015\right)\)
\(\Rightarrow f\left(2015\right)=f\left(0\right)\)
\(\text{Ta có :}f\left(0\right)=f\left(0.\frac{-1}{2}\right)=f\left(0+\frac{-1}{2}\right)=f\left(-\frac{1}{2}\right)=-\frac{1}{2}\)
\(\text{Vậy }f\left(2015\right)=-\frac{1}{2}\)
\(\text{~~Học tốt~~}\)
\(f\left(x\right)=4x\) ; \(g\left(x\right)=x^2\) \(\Rightarrow f\left(n\right)=4n\) ; \(g\left(n\right)=n^2\)
\(f\left(1\right)+f\left(2\right)+...+f\left(n\right)=4\left(1+2+...+n\right)=\frac{4n\left(n+1\right)}{2}\)
\(=\frac{4n^2+4n}{2}=\frac{4g\left(n\right)+f\left(n\right)}{2}\)