K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2021

\(y'=\dfrac{-15}{\left(3x+2\right)^2}\)

Đường thẳng d: \(x-15y+8=0\Leftrightarrow y=\dfrac{1}{15}x+\dfrac{8}{15}\) có hệ số góc \(\dfrac{1}{15}\)

Tiếp tuyến vuông góc với d nên có hsg k thỏa mãn: \(k.\left(\dfrac{1}{15}\right)=-1\Rightarrow k=-15\)

\(\Rightarrow\dfrac{-15}{\left(3x+2\right)^2}=-15\Rightarrow\left(3x+2\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\Rightarrow y=6\\x=-1\Rightarrow y=-4\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-15\left(x+\dfrac{1}{3}\right)+6\\y=-15\left(x+1\right)-4\end{matrix}\right.\)

21 tháng 4 2021

em cam ơn a

NV
2 tháng 4 2021

\(y'=3x^2+6x-6\)

Tiếp tuyến vuông góc đường thẳng đã cho nên có hệ số góc thỏa mãn:

\(k.\left(-\dfrac{1}{18}\right)=-1\Rightarrow k=18\)

\(\Rightarrow3x^2+6x-6=18\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=9\\x=-4\Rightarrow y=9\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=18\left(x-2\right)+9\\y=18\left(x+4\right)+9\end{matrix}\right.\)

NV
2 tháng 4 2021

\(y'=3x^2-3\)

a. \(y'=9\Rightarrow3x^2-3=9\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=5\\x=-2\Rightarrow y=-1\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=9\left(x-2\right)+5\\y=9\left(x+2\right)-1\end{matrix}\right.\)

b. Tiếp tuyến vuông góc Oy nên nhận \(\left(0;1\right)\) là 1 vtpt \(\Rightarrow\) có hệ số góc \(k=0\)

\(\Rightarrow3x^2-3=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=-1\\x=-1\Rightarrow y=3\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-1\\y=3\end{matrix}\right.\)

28 tháng 4 2021

\(y=x^3-3x^2+2x+2\Rightarrow y'=3x^2-6x+2\)

Vi \(\Delta\perp d:y=x-3\Rightarrow y'=-1\Leftrightarrow3x^2-6x+2=-1\)

\(\Rightarrow x=1\Rightarrow y=1-3+2+2=2\)

\(\Rightarrow\Delta:y=-1\left(x-1\right)+2\)

NV
22 tháng 5 2021

Ủa trước 2 số 4 kia là dấu gì vậy bạn?

22 tháng 5 2021

y=x^3-3x+4

 

NV
3 tháng 5 2021

a.

\(y'=\dfrac{\left(sinx+cosx\right)'}{2\sqrt{sinx+cosx}}=\dfrac{cosx-sinx}{2\sqrt{sinx+cosx}}\)

b.

\(y'=\dfrac{-4}{\left(x-1\right)^2}\)

Tiếp tuyến vuông góc với \(y=\dfrac{1}{4}x+5\) nên có hệ số góc thỏa mãn \(k.\left(\dfrac{1}{4}\right)=-1\Rightarrow k=-4\)

\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left(x-1\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-3\\x=2\Rightarrow y=5\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4x-3\\y=-4\left(x-2\right)+5\end{matrix}\right.\)

29 tháng 4 2019

Chọn B.

Gọi  là tiếp điểm của của tiếp tuyến và đồ thị hàm số.

Viết lại d: y = x + 2017 Hệ số góc k = 1

Vì tiếp tuyến cần tìm vuông góc với d nên: 

Với M(0 ; -3), pttt là: y = -1(x – 0) – 3 y = -x – 3.

Với M(-3 ; 1/6), pttt là: y = -(x – 2) – 1 y = -x + 1.

Có hai tiếp tuyến thỏa mãn ycbt là y = -x – 3 và y = -x + 1.

11 tháng 11 2018

Chọn C.