Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-2=-x+1\\y=-x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
a)
b, Gọi giao điểm của 2 đường thẳng trên là M(x1;y1)
tọa độ giao điểm của (d1) và (d2) là nghiệm của hpt
<=>
Vậy...
c, phương trình đường thẳng (d3) có dạng y=ax+b
Vì đt(d3) song song với (d2) và cắt đường thẳng (d1) tại một điểm nằm trên trục tung nên ta được a=-1, x=0,y=-7
=> b=-7
Thay a=-1, b=-7 vào cths y=ax+b ta được
y=-x-7
\(a,\) Bn tự vẽ
\(b,\) PT hoành độ giao điểm của \(\left(d_1\right);\left(d_2\right)\) là
\(-\dfrac{1}{2}x=\dfrac{1}{2}x+3\\ \Leftrightarrow x=-3\\ \Leftrightarrow y=-\dfrac{1}{2}\left(-3\right)=\dfrac{3}{2}\)
Vậy tọa độ giao điểm \(\left(d_1\right);\left(d_2\right)\) là \(A\left(-3;\dfrac{3}{2}\right)\)
\(c,\) Gọi \(B\left(m;-m\right)\) là tọa độ giao điểm của \(\left(d_2\right);\left(d_3\right)\)
\(\Leftrightarrow-m=\dfrac{1}{2}m+3\Leftrightarrow\dfrac{3}{2}m=3\\ \Leftrightarrow m=2\)
Vậy tọa độ giao điểm của \(\left(d_2\right);\left(d_3\right)\) là \(B\left(2;-2\right)\)
Khi đó \(-2=2\cdot2+b\Leftrightarrow b=-6\)
a, Phương trình hoành độ giao điểm là \(\dfrac{3}{2}x=3x-3\Leftrightarrow\dfrac{3}{2}x=3\Leftrightarrow x=2\Leftrightarrow y=3\Leftrightarrow A\left(2;3\right)\)
Vậy \(A\left(2;3\right)\) là giao điểm của 2 đt
b, Gọi \(\left(d_3\right):y=ax+b\left(a\ne0\right)\) là đt cần tìm
\(\left(d_3\right)//\left(d_1\right)\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b\ne0\end{matrix}\right.\)
PT giao của d3 với Ox tại hoành độ -6 là \(-6a+b=0\Leftrightarrow b=6\cdot\dfrac{3}{2}=9\)
Vậy \(\left(d_3\right):y=\dfrac{3}{2}x+9\)