Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong đó ta thấy x=1 là nghiệm bội hai của phương trình ⇒ x=1 không là điểm cực trị của hàm số
Vậy hàm số có 2 điểm cực trị.
Chọn B
Đáp án C.
f’(x) = (x – 1)x2(x + 1)3(x + 2)4
Ta thấy phương trình f’(x) = 0 có 2 nghiệm đơn là 1; -1 và 2 nghiệm kép là 0; -2
Từ đó số điểm cực trị là 2.
Chọn A
f ' ( x ) đổi dấu khi x chạy qua -1 và 3 nên hàm số có 2 điểm cực trị.
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng