Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề 1 chút nha
Ta có hàm số y = f(x) xác định vs mọi \(x\in R\) và x khác 0 thỏa mãn
\(f\left(x\right)+2.f\left(\frac{1}{x}\right)=x^2\)
Thay x = 2 ( thỏa mãn x khác 0) vào công thức \(f\left(x\right)+2.f\left(\frac{1}{x}\right)=x^2\) ta có
\(f\left(2\right)+2.f\left(\frac{1}{2}\right)=2^2\)
\(\Rightarrow\)\(f\left(2\right)+2.f\left(\frac{1}{2}\right)=4\) (1)
Thay \(x=\frac{1}{2}\) vào công thức \(f\left(x\right)+2.f\left(\frac{1}{x}\right)=x^2\) ta có
\(f\left(\frac{1}{2}\right)+2.f\left(\frac{1}{\frac{1}{2}}\right)=\left(\frac{1}{2}\right)^2\)
\(\Rightarrow f\left(\frac{1}{2}\right)+2.f\left(2\right)=\frac{1}{4}\)
\(\Rightarrow2.f\left(\frac{1}{2}\right)+4.f\left(2\right)=\frac{1}{2}\) (2)
Trù vế cho vể của (1) và (2) ta được
\(4.f\left(2\right)-f\left(2\right)=\frac{1}{2}-4\)
\(\Rightarrow3f\left(2\right)=\frac{-7}{2}\)
\(\Rightarrow f\left(2\right)=\frac{-7}{2}.\frac{1}{3}=\frac{-7}{6}\)
Vậy ....
!!!! K chắc
!@@ Học tốt
Chiyuki Fujito
Ta có hàm số y = f(x) xác định vs mọi x∈Rx∈R và x khác 0 thỏa mãn
f(x)+2.f(1x)=x2f(x)+2.f(1x)=x2
Thay x = 2 ( thỏa mãn x khác 0) vào công thức f(x)+2.f(1x)=x2f(x)+2.f(1x)=x2 ta có
f(2)+2.f(12)=22f(2)+2.f(12)=22
⇒⇒f(2)+2.f(12)=4f(2)+2.f(12)=4 (1)
Thay x=12x=12 vào công thức f(x)+2.f(1x)=x2f(x)+2.f(1x)=x2 ta có
f(12)+2.f(112)=(12)2f(12)+2.f(112)=(12)2
⇒f(12)+2.f(2)=14⇒f(12)+2.f(2)=14
⇒2.f(12)+4.f(2)=12⇒2.f(12)+4.f(2)=12 (2)
Trù vế cho vể của (1) và (2) ta được
4.f(2)−f(2)=12−44.f(2)−f(2)=12−4
⇒3f(2)=−72⇒3f(2)=−72
⇒f(2)=−72.13=−76
Answer:
\(f\left(x\right)+2f\left(\frac{1}{x}\right)=x^2\)
Thay x = 2 vào, ta được:
\(f\left(2\right)+2f\left(\frac{1}{2}\right)=2^2\Rightarrow f\left(2\right)=2f\left(\frac{1}{2}\right)=4\left(\text{*}\right)\)
Thay \(x=\frac{1}{2}\) vào, ta được:
\(f\left(\frac{1}{2}\right)+2\left(\frac{1}{\frac{1}{2}}\right)=\left(\frac{1}{2}\right)^2\Rightarrow f\left(\frac{1}{2}\right)+2f\left(2\right)=\frac{1}{4}\Rightarrow2f\left(\frac{1}{2}\right)+4f\left(2\right)=\frac{1}{2}\left(\text{*}\text{*}\right)\)
Từ (*) và (**) \(\Rightarrow f\left(2\right)+2f\left(\frac{1}{2}\right)-\left(2f\left(\frac{1}{2}\right)+4f\left(2\right)\right)=4-\frac{1}{2}\)
\(\Rightarrow f\left(2\right)+2f\left(\frac{1}{2}\right)-2f\left(\frac{1}{2}\right)-4f\left(2\right)=\frac{7}{2}\)
\(\Rightarrow-3f\left(2\right)=\frac{7}{2}\)
\(\Rightarrow f\left(2\right)=\frac{7}{2}.\left(-3\right)=\frac{-7}{6}\)
\(2f\left(x\right)-3f\left(\frac{1}{x}\right)=x^3\)
Thay \(x=2\) vào đẳng thức trên ta có : \(2f\left(2\right)-3f\left(\frac{1}{2}\right)=8\)
\(\Leftrightarrow2\left[2f\left(2\right)-3f\left(\frac{1}{2}\right)\right]=16\Leftrightarrow4f\left(2\right)-6f\left(\frac{1}{2}\right)=16\)(1)
Thay \(x=\frac{1}{2}\) vào đẳng thức trên ta có : \(2f\left(\frac{1}{2}\right)-3f\left(2\right)=\frac{1}{8}\)
\(\Leftrightarrow3\left[2f\left(\frac{1}{2}\right)-3f\left(2\right)\right]=\frac{3}{8}\Leftrightarrow6f\left(\frac{1}{2}\right)-9f\left(2\right)=\frac{3}{8}\)(2)
Lấy (1) cộng (2) ta được : \(4f\left(2\right)-9f\left(2\right)=16+\frac{3}{8}\Leftrightarrow-5f\left(2\right)=\frac{131}{8}\)
\(\Rightarrow f\left(2\right)=\frac{131}{8}:\left(-5\right)=-\frac{131}{40}\)
Xét x = 2
=> 2f(2) - 3f(1/2) = 8
Xét x = 1/2
=> 2f(1/2) - 3f(2) = 1/8
Đặt a = f(2), b = f(1/2)
Ta có hệ PT:
2a - 3b = 8
2b - 3a = 1/8
<=>
2a = 8 + 3b
16b - 24a = 1
<=>
2a = 8 + 3b
16b - 12(8 + 3b) = 1
<=>
2a = 8 + 3b
16b - 96 - 36b = 1
<=>
2a = 8 + 3b
20b = -97
<=>
a = -131/40
b = -97/20
Vậy f(2) = -131/40
bài 1: f(x) + 2f(2-x)=3x (1)
f(2-x)+2[(2-(2-x)]=3(2-x) suy ra f(2-x)+2f(x)=6-3x suy ra 2f(2-x)+4f(x)=12-6x (2)
Lấy (2)-(1) ta có: 4f(x)-f(x)=12-6x-3x suy ra f(x)=4-3x
vậy f(2)=4-3*2=-2
Bài 2 tương tự: f(x)+3f(1/x)=x^2 (1)
f(1/x)+3f(x)=1/x^2 suy ra 3f(1/x)+9f(x)=3/x^2 (2)
Lấy (2)-(1) ta có: 9f(x)-f(x)=3/x^2-x^2 suy ra f(x)=(3-x^4)/8x^2
Vậy f(2)=(3-2^4)(8*2^2)=-13/32
ta có
thay x = 2 ta đc
f(2) + 2f(1/2) = 4 (1)
thay x = 1/2 ta đc
f(1/2) + 2f(2) = 1/4
=> 2f(1/2) + 4f(2) = 1/2 (2)
từ (1) và (2) => ta có
2f(1/2) + 4f(2) = 1/2
-
f(2) + 2f(1/2) = 4
=
3f(2) = 1/2 - 4 = -7/2
=> f(2) = -7/6
\(f\left(\frac{1}{3}\right)+2f\left(\frac{1}{\frac{1}{3}}\right)=\left(\frac{1}{3}\right)^2\Rightarrow f\left(\frac{1}{3}\right)+2f\left(3\right)=\frac{1}{9}\)(1)
\(f\left(3\right)+2f\left(\frac{1}{3}\right)=3^2\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)=18\)(2)
Từ (1) và (2) \(\Rightarrow2f\left(3\right)+4f\left(\frac{1}{3}\right)-f\left(\frac{1}{3}\right)-2f\left(3\right)=18-\frac{1}{9}\)
\(\Rightarrow3f\left(\frac{1}{3}\right)=\frac{161}{9}\Rightarrow f\left(\frac{1}{3}\right)=\frac{161}{27}\)
Ta có :
\(f\left(4\right)+2f\left(\frac{1}{4}\right)=16\)
\(f\left(\frac{1}{4}\right)+2f\left(4\right)=\frac{1}{16}\Rightarrow2f\left(\frac{1}{4}\right)+4f\left(4\right)=\frac{1}{8}\)
\(\Rightarrow\left[f\left(4\right)+2f\left(\frac{1}{4}\right)\right]-\left[2f\left(\frac{1}{4}\right)+4f\left(4\right)\right]=16-\frac{1}{8}=\frac{127}{8}\)
\(\Rightarrow-3f\left(4\right)=\frac{127}{8}\Rightarrow f\left(4\right)=\frac{127}{8}:\left(-3\right)=-\frac{127}{24}\)
Vậy \(f\left(4\right)=-\frac{127}{24}\)
Mình ko trắc lắm !!!!! sai đừng ném đá nha
cảm ơn bạn nha