K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn C

19 tháng 4 2023

em muốn hỏi cách làm ấy ạ? hướng giải là như nào ấy ạ

11 tháng 11 2018

7 tháng 3 2018

Chọn D.

Xét  I = ∫ 0 1 f ' x d x   Đặt  t = x → t 2 = x → 2 t d t = d x

Đổi cận   x = 0 → t = 0 x = 1 → t = 1 . Khi đó  I = 2 ∫ 0 1 t f ' ( t ) d t = 2 A

Tính   A = ∫ 0 1 t f ' ( t ) d t . Đặt  u = t d v = f ' t d t → d u = d t v = f t

 

Khi đó 

11 tháng 3 2018

4 tháng 8 2018

Đáp án D

5 tháng 4 2019

Đáp án C

2 tháng 8 2019

NV
4 tháng 3 2022

\(f'\left(x\right)=f'\left(1-x\right)\Rightarrow\int f'\left(x\right)dx=\int f'\left(1-x\right)dx\)

\(\Rightarrow f\left(x\right)=-f\left(1-x\right)+C\Rightarrow f\left(x\right)+f\left(1-x\right)=C\)

Thay \(x=0\Rightarrow f\left(0\right)+f\left(1\right)=C\Rightarrow C=42\)

\(\Rightarrow\int\limits^1_0\left[f\left(x\right)+f\left(1-x\right)\right]dx=\int\limits^1_042dx=42\)

Xét \(I=\int\limits^1_0f\left(1-x\right)dx\)

Đặt \(1-x=u\Rightarrow dx=-du;\left\{{}\begin{matrix}x=0\Rightarrow u=1\\x=1\Rightarrow u=0\end{matrix}\right.\)

\(\Rightarrow I=\int\limits^0_1f\left(u\right).\left(-du\right)=\int\limits^1_0f\left(u\right).du=\int\limits^1_0f\left(x\right)dx\)

\(\Rightarrow2\int\limits^1_0f\left(x\right)dx=42\Rightarrow\int\limits^1_0f\left(x\right)dx=21\)

30 tháng 10 2018

Đáp án C