K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Giải bài 4 trang 98 sgk Hình học 11 | Để học tốt Toán 11Giải bài 4 trang 98 sgk Hình học 11 | Để học tốt Toán 11Giải bài 4 trang 98 sgk Hình học 11 | Để học tốt Toán 11

a: Gọi E là trung điểm của AB

ΔABC đều nên CE vuông góc AB

ΔABD đều nên DE vuông góc AB

=>AB vuông góc (CDE)

=>AB vuông góc CD

b: Xét ΔCAB có CN/CB=CM/CA

nên MN//AB và MN=1/2AB

Xét ΔDAB có DQ/DA=DP/DB

nên PQ//AB và PQ/AB=DQ/DA=1/2

=>MN//PQ và MN=PQ

=>MNPQ là hình bình hành

Xét ΔADC có AQ/AD=AM/AC

nên QM//DC

=>QM vuông góc AB

=>QM vuông góc QP

=>MNPQ là hình chữ nhật

31 tháng 3 2017

Giải bài 6 trang 98 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 6 trang 98 sgk Hình học 11 | Để học tốt Toán 11

25 tháng 8 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.

⇒ IK ⊥ AD (2)

Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.

16 tháng 12 2018

a) E ∈ AB mà AB ⊂ (ABC)

⇒ E ∈ (ABC)

F ∈ AC mà AC ⊂ (ABC)

⇒ F ∈ (ABC)

Đường thẳng EF có hai điểm E, F cùng thuộc mp(ABC) nên theo tính chất 3 thì EF ⊂ (ABC).

b) I ∈ BC mà BC ⊂ (BCD) nên I ∈ (BCD) (1)

I ∈ EF mà EF ⊂ (DEF) nên I ∈ (DEF) (2)

Từ (1) và (2) suy ra I là điểm chung của hai mặt phẳng (BCD) và (DEF).

31 tháng 3 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

31 tháng 3 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

NV
17 tháng 12 2020

a. 

Trong mp (SAB) nối PM kéo dài cắt SB tại G

Trong mp (ABCD) nối PN cắt BC kéo dài tại H

\(\Rightarrow GH=\left(MNP\right)\cap\left(SBC\right)\)

b.

Nối SE cắt AD tại I, nối SF cắt BC tại K

Trong mp (ABCD), nối IK cắt PN kéo dài tại S

Trong mp (SBC), SF kéo dài cắt GH tại R

\(\Rightarrow RS\) là giao tuyến của (MNP) và (SEF)

Trong mp (SEF), nối RS và EF cắt nhau tại Q

\(\Rightarrow Q=EF\cap\left(MNP\right)\)

8 tháng 8 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Tam giác ABC cân đỉnh A và có I là trung điểm của BC nên AI ⊥ BC. Tương tự tam giác DBC cân đỉnh D và có có I là trung điểm của BC nên DI ⊥ BC. Ta suy ra:

BC ⊥ (AID) nên BC ⊥ AD.

b) Vì BC ⊥ (AID) nên BC ⊥ AH

 

Mặt khác AH ⊥ ID nên ta suy ra AH vuông góc với mặt phẳng (BCD).

26 tháng 5 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (α) ∩ (ABC) = MN và MN // AB

Ta có N ∈ (BCD) và Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nên ⇒ (α) ∩ (BCD) = NP và NP // CD

Ta có P ∈ (ABD)

Và Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên ⇒ (α) ∩ (ABD) = PQ và PQ // AB

Giải sách bài tập Toán 11 | Giải sbt Toán 11 nên ⇒ (α) ∩ (ACD) = MQ và MQ // CD

Do đó MN // PQ và NP // MQ, Vậy tứ giác MNPQ là hình bình hành.

b) Ta có: MP ∩ NQ = O. Gọi I là trung điểm của CD.

Trong tam giác ACD có : MQ // CD ⇒ AI cắt MQ tại trung điểm E của MQ.

Trong tam giác ACD có : NP // CD ⇒ BI cắt NP tại trung điểm F của NP.

Vì MNPQ là hình bình hành nên ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

EF // MN ⇒ EF // AB

Trong ΔABI ta có EF // AB suy ra : IO cắt AB tại trung điểm J

⇒ I, O, J thẳng hàng

⇒ O ∈ IJ cố định.

 

Vì M di động trên đoạn AC nên Ochạy trong đoạn IJ .

Vậy tập hợp các điểm O là đoạn IJ.