Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : góc xOy + góc yOz = 180o (kề bù)
=> \(\frac{1}{2}\) góc xOy + \(\frac{1}{2}\) góc yOz = 90o
=> góc yOm + góc yOn = 90o
hay góc mOn = 90o
b) Theo góc đối đỉnh ta có : góc yOm = góc y'Om' và góc xOy = góc zOy'
Mà góc yOm = \(\frac{1}{2}\) góc xOy (do Om là tia p/g của góc xOy) => góc y'Om' = \(\frac{1}{2}\) góc zOy'
Vậy Om là tia p/g của góc y'Oz
Chú ý: Kí hiệu * là độ
-Vì OM là tia phân giác của góc AOB nên
góc AOM = góc MOB = \(\frac{gócAOB}{2}\) (1)
-Vì ON là tia phân giá của góc BOC nên
góc BON = góc NOC = \(\frac{gócBOC}{2}\) (2)
-Ta có góc AOB + góc BOC = 180* (vì kề bù)
Do đó: \(\frac{gócAOB}{2}+\frac{gócBOC}{2}=\frac{180}{2}\)= 90* (3)
Từ (1), (2) và (3) suy ra góc MON = 90* (hay ON vuông góc với OM)
-Vì đường thẳng a đi qua D và vuông góc với OM nên góc D = 90*
-Ta có góc MON = góc D (=90*) mà chúng đang ở vị trí đồng vị
Suy ra a // ON
a) Tính được m O n ^ = 90°.
b) Tương tự ý b) 17.