Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: MN // AB (gt). \(\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{ABC}\\\widehat{NAC}=\widehat{ACB}\end{matrix}\right.\) (so le trong).
Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân).
\(\Rightarrow\widehat{MAB}=\widehat{NAC.}\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (A là trung điểm của MN).
+ AB = AC (gt).
+ \(\widehat{MAB}=\widehat{NAC}\left(cmt\right).\)
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
Xét tứ giác MNCB có: \(\text{MN // CB}\) (gt).
\(\Rightarrow\) Tứ giác MNCB là hình thang.
Mà \(\widehat{M}=\widehat{N}\) (Tam giác AMB = Tam giác ANC).
\(\Rightarrow\) Tứ giác MNCB là hình thang cân.
cho mik hỏi H,I,K chỉ thuộc các cạnh đó hay là trung điểm
Gọi gđ của AI với DC và BK với DC lần lượt là E,F
xét hthang ABCD coa: M là t/đ của AD(gt) và N là t/đ của BC(gt) => MN là đg trung bình của hthang ABCD (1)
xét tg ADE có: DI vg vs AE(gt) và DI là pg của ^ADE (gt) => tg ADI cân tại D => I là t/đ của AE
c/m tương tự ta đc: K la t/đ của BF
xét hthang ABFE (AB//DC mà E;F thuộc DC) có: I là t/đ của AE(cmt) và F là t/đ của BF(cmt)
=> IK là đg trung bình của hthang ABFE (2)
Mặt khác : hthang ABCD và hthang ABFE có cùng chiều cao và AB//DC ; AB//EF mà DC và EF trùng nhau nên đg trung bình của 2 hthang ABCD và ABFE trùng nhau (3)
Từ (1),(2),(3) => M,N,I,k thẳng hàng (đpcm)