Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bạn tự vẽ hình!)
a) Ta có: \(\widehat{xOy}+\widehat{yOz}=180\) độ (Kề bù)
\(\Rightarrow\widehat{xOy}+2\widehat{xOy}=180\)
\(\Rightarrow3\widehat{xOy}=180\)
\(\Rightarrow\widehat{xOy}=\frac{180}{3}=60\)độ
Khi có góc xOy thì tính được \(\widehat{yOz}=60.2=120\)độ
vì xOy và yOz là hai góc kề bù
=> xOy + yOz = 180 độ
Mà yOz = 1/5 xOy
Thay vào , ta được :
xOy + 1/5 xOy = 180 độ
xOy . ( 1 + 1/5 ) = 180 độ
xOy . 6/5 = 180 độ
xOy = 180 độ : 6/5
xOy = 150
Ta có : \(\widehat{xOy}+\widehat{yOz}=180^0\)(hai góc kề bù)
Mà \(\widehat{yOz}=2\widehat{xOy}\)
=> \(\widehat{xOy}+2\widehat{xOy}=180^0\)
=> \(3\widehat{xOy}=180^0\)
=> \(\widehat{xOy}=60^0\)
Theo đề bài có \(\widehat{yOz}=2\widehat{xOy}\Leftrightarrow\widehat{yOz}=2\cdot60^0=120^0\)
Vậy : ...
Vì \(\widehat{xOy}\)và \(\widehat{yOz}\)là 2 góc kề bù \(\Rightarrow\widehat{xOy}+\widehat{yOz}=180^o\)
mà \(\widehat{yOz}=2.\widehat{xOy}\)
\(\Rightarrow\widehat{xOy}+2.\widehat{xOy}=180^o\)\(\Rightarrow3.\widehat{xOy}=180^o\)\(\Rightarrow\widehat{xOy}=60^o\)
\(\Rightarrow\widehat{yOz}=180^o-60^o=120^o\)
Vậy \(\widehat{xOy}=60^o\)và \(\widehat{yOz}=120^o\)
vì các góc xOy và yOz là 2 góc kề bù mà xOy=50o ( mik ko biết dấu góc viết ở chỗ nào cả)
=>xOy + yOz = 180o
=> yOz = 180o-50o = 130o
sorry vì ko vẽ hình ( vì điện thoại rơi từ tầng 5 xuống tầng 1)
góc 1/2 góc xoy = 3/4 góc yoz => góc xoy = (3/4 : 1/2) góc yoz = 3/2 góc yoz
góc xoy và yoz kề bù nên góc xoy + góc yoz = 180o
=> góc xoy bằng: 180o : (3+ 2) x 3 = 108o
=> góc yoz = 180o - 108o = 72o
\(\widehat{xoy}=2.\widehat{yOz}\)
\(\widehat{xOy}+\widehat{yOz}=180^o\left(gt\right)\)
hay \(2.\widehat{yOz}+\widehat{yOz}=180^o\)
hay \(3.\widehat{yOz}=180^o\)
\(\Rightarrow\widehat{yOz}=\frac{180^o}{3}=60^o\)
\(\Rightarrow\widehat{xOz}=180^o-\widehat{yOz}=180^o-60^o=120^o\)
Ta có: \(\widehat{xOy}=\dfrac{1}{2}\widehat{yOz}\)
nên \(\widehat{yOz}=2\cdot\widehat{xOy}\)
Ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\)(hai góc kề bù)
\(\Leftrightarrow2\cdot\widehat{xOy}+\widehat{xOy}=180^0\)
\(\Leftrightarrow3\cdot\widehat{xOy}=180^0\)
hay \(\widehat{xOy}=60^0\)
Vậy: \(\widehat{xOy}=60^0\)