Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOHM vuông tại H và ΔOKM vuông tại K có
OM chung
\(\widehat{HOM}=\widehat{KOM}\)
Do đó: ΔOHM=ΔOKM
b: ta có: ΔOHM=ΔOKM
nên MH=MK
hay ΔMHK cân tại M
c: \(\widehat{KMH}=360^0-90^0-90^0-120^0=60^0\)
nênΔMHK đều
Bài 1, Thêm điều kiện AB = DM
BÀi 2, Vì NF vuông góc vs AM ; ME vuông góc vs AN (gt)
Mà ME giao vs NF tại P (gt)
=> P là trực tâm tam giác AMN ( giao của 2 đường cao )
=> AP vuông góc vs MN Mà tam giác AMN cân tại A
=> AP phân giác góc A ( tính chất tam giác cân )
Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)
Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
Suy ra: MA=MB
Xét ΔOKM vuông tại K và ΔOHM vuông tại H có
OM chung
\(\widehat{KOM}=\widehat{HOM}\)
Do đó;ΔOKM=ΔOHM
Suy ra: OH=OK
=>AH=BK
Xét ΔMAH vuông tại H và ΔMBK vuông tại K có
MA=MB
AH=BK
Do đó: ΔMHA=ΔMKB