Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này mà toán lớp 4 à?
nếu các bn thấy đúng thì tik cho mình nhé
bđt \(\Leftrightarrow\)\(\left(ab+1\right)\left(bc+1\right)\left(ca+1\right)\ge\left(\frac{10}{3}\right)^3abc\) (*)
đặt \(\left(\sqrt{ab};\sqrt{bc};\sqrt{ca}\right)=\left(x;y;z\right)\)\(\Rightarrow\)\(xyz\le\frac{1}{27}\)
(*) \(\Leftrightarrow\)\(\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\ge\left(\frac{10}{3}\right)^3xyz\)
\(VT\ge\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\)
Có \(xy+1\ge10\sqrt[10]{\frac{xy}{9^9}}\)
Tương tự với \(yz+1\)\(;\)\(zx+1\)\(\Rightarrow\)\(VT\ge10^3\sqrt[10]{\frac{\left(xyz\right)^2}{9^{27}}}\)
Ta cần CM \(10^3\sqrt[10]{\frac{\left(xyz\right)^2}{9^{27}}}\ge\frac{10^3}{3^3}xyz\) đúng với \(xyz\le\frac{1}{27}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Đặt \(P=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)\)
Vì a+b+c=1 nên
\(P=\left(a+\frac{1}{b}\right)\left(b+\frac{1}{c}\right)\left(c+\frac{1}{a}\right)=abc+\frac{1}{abc}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\)
Từ BĐt Cosi cho 3 số dương ta có:
\(\frac{1}{3}=\frac{a+b+c}{3}\ge\sqrt[3]{abc}\Rightarrow abc\le\frac{1}{27}\)
đặt x=abc thì \(0< x\le\frac{1}{27}\)
do đó: \(x+\frac{1}{x}-27-\frac{1}{27}=\frac{\left(27-x\right)\left(1-27x\right)}{27x}\ge0\)
=> \(x+\frac{1}{x}=abc+\frac{1}{abc}\ge27+\frac{1}{27}=\frac{730}{27}\)
Mặt khác: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Nên \(P\ge\frac{730}{27}+10=\frac{1000}{27}=\left(\frac{10}{3}\right)^3\)
Dấu "=" xảy ra khi a=b=c\(=\frac{1}{3}\)
a )
2 / 3 + 5 / 4 = 8 / 12 + 15 / 12 = 23 / 12
b )
15 / 25 + 6 / 21 = 3 / 5 + 2 / 7
= 21 / 35 + 10 / 35
= 31 / 35
c )
4 / 3 - 11 / 15 = 20 / 15 - 11 / 15
= 9 / 15
d )
12 / 10 - 2 / 5 = 12 / 10 - 4 / 10
= 8 / 10
= 4 / 5
\(a,\frac{15}{18}=\frac{5}{6}\)
\(b,\frac{144}{351}=\frac{16}{39}\)
\(c,\frac{6}{30}=\frac{1}{5}\)
\(d,\frac{2005}{3000}=\frac{401}{600}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{c}=\frac{c+d}{d}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
=>\(\frac{a}{b}+1=\frac{c}{d}+1\)
=>\(\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\)
=>\(\frac{a+b}{b}=\frac{c+d}{d}\)
=>ĐPCM