Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3
\(a,\left(d\right)\)//\(\left(d'\right)\)\(\Leftrightarrow\left\{{}\begin{matrix}2m-3=m\\-m+2\ne3m-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\ne\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow m=3\)
b, (d) cắt (d') \(\Leftrightarrow2m-3\ne m\Leftrightarrow m\ne3\)
a/ để hàm số (d) là hàm số bậc nhất thì k\(\ne0\)
để hàm số (d') là hàm số bậc nhất thì k\(\ne3\)
b/để (d) và (d') trùng nhau thì:
\(\left\{{}\begin{matrix}k=3-k\\m-1=3-m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}k=\frac{3}{2}\\m=2\end{matrix}\right.\)
vậy...
a: Khi \(m=-\sqrt{3}\) thì \(\left(d\right):y=-\sqrt{3}x-2\)
\(\left(d'\right):y=\left(-\sqrt{3}-2\right)x-\sqrt{3}\)
Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-\sqrt{3}x-2=\left(-\sqrt{3}-2\right)x-\sqrt{3}\\y=-\sqrt{3}\cdot x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(-\sqrt{3}+\sqrt{3}+2\right)x=2-\sqrt{3}\\y=-\sqrt{3}\cdot x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2-\sqrt{3}}{2}\\y=\dfrac{-\sqrt{3}\left(2-\sqrt{3}\right)-4}{2}=\dfrac{-1-2\sqrt{3}}{2}\end{matrix}\right.\)
b: Điểm B có tọa độ là:
\(\left\{{}\begin{matrix}x=0\\y=m\cdot0-2=-2\end{matrix}\right.\)
b: y=(m-2)x+m
=mx-2x+m
=m(x+1)-2x
Điểm C có tọa độ là: x+1=0 và y=-2x
=>x=-1 và y=2
c: Để hai đường vuông góc thì m(m-2)=-1
=>m=1
Bài 1:
a: Để (d) là hàm số bậc nhất thì 2m-2<>0
hay m<>1
b: Để (d) là hàm số đồng biến thì 2m-2>0
hay m>1
c: Hàm số (d') đồng biến vì a=4>0
Bài 2:
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-x+6=3x-6\\y=-x+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)
b: Thay x=-3 và y=0 vào y=(m-2)x+3, ta được:
-3m+6+3=0
=>m=3
a: Để (d)//(d') nên \(\left\{{}\begin{matrix}4m-3=m+6\\m^2< >9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\m\notin\left\{3;-3\right\}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
b: Để (d) trùng với (d') thì \(\left\{{}\begin{matrix}4m-3=m+6\\m^2=9\end{matrix}\right.\Leftrightarrow m=3\)
c: Để hai đường thẳng cắt nhau thì 4m-3<>m+6
hay m<>3